URI: 
       tnumbers.lisp - clic - Clic is an command line interactive client for gopher written in Common LISP
  HTML git clone git://bitreich.org/clic/ git://hg6vgqziawt5s4dj.onion/clic/
   DIR Log
   DIR Files
   DIR Refs
   DIR Tags
   DIR LICENSE
       ---
       tnumbers.lisp (9688B)
       ---
            1 (in-package :alexandria)
            2 
            3 (declaim (inline clamp))
            4 (defun clamp (number min max)
            5   "Clamps the NUMBER into [min, max] range. Returns MIN if NUMBER is lesser then
            6 MIN and MAX if NUMBER is greater then MAX, otherwise returns NUMBER."
            7   (if (< number min)
            8       min
            9       (if (> number max)
           10           max
           11           number)))
           12 
           13 (defun gaussian-random (&optional min max)
           14   "Returns two gaussian random double floats as the primary and secondary value,
           15 optionally constrained by MIN and MAX. Gaussian random numbers form a standard
           16 normal distribution around 0.0d0.
           17 
           18 Sufficiently positive MIN or negative MAX will cause the algorithm used to
           19 take a very long time. If MIN is positive it should be close to zero, and
           20 similarly if MAX is negative it should be close to zero."
           21   (macrolet
           22       ((valid (x)
           23          `(<= (or min ,x) ,x (or max ,x)) ))
           24     (labels
           25         ((gauss ()
           26            (loop
           27                  for x1 = (- (random 2.0d0) 1.0d0)
           28                  for x2 = (- (random 2.0d0) 1.0d0)
           29                  for w = (+ (expt x1 2) (expt x2 2))
           30                  when (< w 1.0d0)
           31                  do (let ((v (sqrt (/ (* -2.0d0 (log w)) w))))
           32                       (return (values (* x1 v) (* x2 v))))))
           33          (guard (x)
           34            (unless (valid x)
           35              (tagbody
           36               :retry
           37                 (multiple-value-bind (x1 x2) (gauss)
           38                   (when (valid x1)
           39                     (setf x x1)
           40                     (go :done))
           41                   (when (valid x2)
           42                     (setf x x2)
           43                     (go :done))
           44                   (go :retry))
           45               :done))
           46            x))
           47       (multiple-value-bind
           48             (g1 g2) (gauss)
           49         (values (guard g1) (guard g2))))))
           50 
           51 (declaim (inline iota))
           52 (defun iota (n &key (start 0) (step 1))
           53   "Return a list of n numbers, starting from START (with numeric contagion
           54 from STEP applied), each consequtive number being the sum of the previous one
           55 and STEP. START defaults to 0 and STEP to 1.
           56 
           57 Examples:
           58 
           59   (iota 4)                      => (0 1 2 3)
           60   (iota 3 :start 1 :step 1.0)   => (1.0 2.0 3.0)
           61   (iota 3 :start -1 :step -1/2) => (-1 -3/2 -2)
           62 "
           63   (declare (type (integer 0) n) (number start step))
           64   (loop repeat n
           65         ;; KLUDGE: get numeric contagion right for the first element too
           66         for i = (+ (- (+ start step) step)) then (+ i step)
           67         collect i))
           68 
           69 (declaim (inline map-iota))
           70 (defun map-iota (function n &key (start 0) (step 1))
           71   "Calls FUNCTION with N numbers, starting from START (with numeric contagion
           72 from STEP applied), each consequtive number being the sum of the previous one
           73 and STEP. START defaults to 0 and STEP to 1. Returns N.
           74 
           75 Examples:
           76 
           77   (map-iota #'print 3 :start 1 :step 1.0) => 3
           78     ;;; 1.0
           79     ;;; 2.0
           80     ;;; 3.0
           81 "
           82   (declare (type (integer 0) n) (number start step))
           83   (loop repeat n
           84         ;; KLUDGE: get numeric contagion right for the first element too
           85         for i = (+ start (- step step)) then (+ i step)
           86         do (funcall function i))
           87   n)
           88 
           89 (declaim (inline lerp))
           90 (defun lerp (v a b)
           91   "Returns the result of linear interpolation between A and B, using the
           92 interpolation coefficient V."
           93   ;; The correct version is numerically stable, at the expense of an
           94   ;; extra multiply. See (lerp 0.1 4 25) with (+ a (* v (- b a))). The
           95   ;; unstable version can often be converted to a fast instruction on
           96   ;; a lot of machines, though this is machine/implementation
           97   ;; specific. As alexandria is more about correct code, than
           98   ;; efficiency, and we're only talking about a single extra multiply,
           99   ;; many would prefer the stable version
          100   (+ (* (- 1.0 v) a) (* v b)))
          101 
          102 (declaim (inline mean))
          103 (defun mean (sample)
          104   "Returns the mean of SAMPLE. SAMPLE must be a sequence of numbers."
          105   (/ (reduce #'+ sample) (length sample)))
          106 
          107 (declaim (inline median))
          108 (defun median (sample)
          109   "Returns median of SAMPLE. SAMPLE must be a sequence of real numbers."
          110   (let* ((vector (sort (copy-sequence 'vector sample) #'<))
          111          (length (length vector))
          112          (middle (truncate length 2)))
          113     (if (oddp length)
          114         (aref vector middle)
          115         (/ (+ (aref vector middle) (aref vector (1- middle))) 2))))
          116 
          117 (declaim (inline variance))
          118 (defun variance (sample &key (biased t))
          119   "Variance of SAMPLE. Returns the biased variance if BIASED is true (the default),
          120 and the unbiased estimator of variance if BIASED is false. SAMPLE must be a
          121 sequence of numbers."
          122   (let ((mean (mean sample)))
          123     (/ (reduce (lambda (a b)
          124                  (+ a (expt (- b mean) 2)))
          125                sample
          126                :initial-value 0)
          127        (- (length sample) (if biased 0 1)))))
          128 
          129 (declaim (inline standard-deviation))
          130 (defun standard-deviation (sample &key (biased t))
          131   "Standard deviation of SAMPLE. Returns the biased standard deviation if
          132 BIASED is true (the default), and the square root of the unbiased estimator
          133 for variance if BIASED is false (which is not the same as the unbiased
          134 estimator for standard deviation). SAMPLE must be a sequence of numbers."
          135   (sqrt (variance sample :biased biased)))
          136 
          137 (define-modify-macro maxf (&rest numbers) max
          138   "Modify-macro for MAX. Sets place designated by the first argument to the
          139 maximum of its original value and NUMBERS.")
          140 
          141 (define-modify-macro minf (&rest numbers) min
          142   "Modify-macro for MIN. Sets place designated by the first argument to the
          143 minimum of its original value and NUMBERS.")
          144 
          145 ;;;; Factorial
          146 
          147 ;;; KLUDGE: This is really dependant on the numbers in question: for
          148 ;;; small numbers this is larger, and vice versa. Ideally instead of a
          149 ;;; constant we would have RANGE-FAST-TO-MULTIPLY-DIRECTLY-P.
          150 (defconstant +factorial-bisection-range-limit+ 8)
          151 
          152 ;;; KLUDGE: This is really platform dependant: ideally we would use
          153 ;;; (load-time-value (find-good-direct-multiplication-limit)) instead.
          154 (defconstant +factorial-direct-multiplication-limit+ 13)
          155 
          156 (defun %multiply-range (i j)
          157   ;; We use a a bit of cleverness here:
          158   ;;
          159   ;; 1. For large factorials we bisect in order to avoid expensive bignum
          160   ;;    multiplications: 1 x 2 x 3 x ... runs into bignums pretty soon,
          161   ;;    and once it does that all further multiplications will be with bignums.
          162   ;;
          163   ;;    By instead doing the multiplication in a tree like
          164   ;;       ((1 x 2) x (3 x 4)) x ((5 x 6) x (7 x 8))
          165   ;;    we manage to get less bignums.
          166   ;;
          167   ;; 2. Division isn't exactly free either, however, so we don't bisect
          168   ;;    all the way down, but multiply ranges of integers close to each
          169   ;;    other directly.
          170   ;;
          171   ;; For even better results it should be possible to use prime
          172   ;; factorization magic, but Nikodemus ran out of steam.
          173   ;;
          174   ;; KLUDGE: We support factorials of bignums, but it seems quite
          175   ;; unlikely anyone would ever be able to use them on a modern lisp,
          176   ;; since the resulting numbers are unlikely to fit in memory... but
          177   ;; it would be extremely unelegant to define FACTORIAL only on
          178   ;; fixnums, _and_ on lisps with 16 bit fixnums this can actually be
          179   ;; needed.
          180   (labels ((bisect (j k)
          181              (declare (type (integer 1 #.most-positive-fixnum) j k))
          182              (if (< (- k j) +factorial-bisection-range-limit+)
          183                  (multiply-range j k)
          184                  (let ((middle (+ j (truncate (- k j) 2))))
          185                    (* (bisect j middle)
          186                       (bisect (+ middle 1) k)))))
          187            (bisect-big (j k)
          188              (declare (type (integer 1) j k))
          189              (if (= j k)
          190                  j
          191                  (let ((middle (+ j (truncate (- k j) 2))))
          192                    (* (if (<= middle most-positive-fixnum)
          193                           (bisect j middle)
          194                           (bisect-big j middle))
          195                       (bisect-big (+ middle 1) k)))))
          196            (multiply-range (j k)
          197              (declare (type (integer 1 #.most-positive-fixnum) j k))
          198              (do ((f k (* f m))
          199                   (m (1- k) (1- m)))
          200                  ((< m j) f)
          201                (declare (type (integer 0 (#.most-positive-fixnum)) m)
          202                         (type unsigned-byte f)))))
          203     (if (and (typep i 'fixnum) (typep j 'fixnum))
          204         (bisect i j)
          205         (bisect-big i j))))
          206 
          207 (declaim (inline factorial))
          208 (defun %factorial (n)
          209   (if (< n 2)
          210       1
          211       (%multiply-range 1 n)))
          212 
          213 (defun factorial (n)
          214   "Factorial of non-negative integer N."
          215   (check-type n (integer 0))
          216   (%factorial n))
          217 
          218 ;;;; Combinatorics
          219 
          220 (defun binomial-coefficient (n k)
          221   "Binomial coefficient of N and K, also expressed as N choose K. This is the
          222 number of K element combinations given N choises. N must be equal to or
          223 greater then K."
          224   (check-type n (integer 0))
          225   (check-type k (integer 0))
          226   (assert (>= n k))
          227   (if (or (zerop k) (= n k))
          228       1
          229       (let ((n-k (- n k)))
          230         ;; Swaps K and N-K if K < N-K because the algorithm
          231         ;; below is faster for bigger K and smaller N-K
          232         (when (< k n-k)
          233           (rotatef k n-k))
          234         (if (= 1 n-k)
          235             n
          236             ;; General case, avoid computing the 1x...xK twice:
          237             ;;
          238             ;;    N!           1x...xN          (K+1)x...xN
          239             ;; --------  =  ---------------- =  ------------, N>1
          240             ;; K!(N-K)!     1x...xK x (N-K)!       (N-K)!
          241             (/ (%multiply-range (+ k 1) n)
          242                (%factorial n-k))))))
          243 
          244 (defun subfactorial (n)
          245   "Subfactorial of the non-negative integer N."
          246   (check-type n (integer 0))
          247   (if (zerop n)
          248       1
          249       (do ((x 1 (1+ x))
          250            (a 0 (* x (+ a b)))
          251            (b 1 a))
          252           ((= n x) a))))
          253 
          254 (defun count-permutations (n &optional (k n))
          255   "Number of K element permutations for a sequence of N objects.
          256 K defaults to N"
          257   (check-type n (integer 0))
          258   (check-type k (integer 0))
          259   (assert (>= n k))
          260   (%multiply-range (1+ (- n k)) n))