tsequences.lisp - clic - Clic is an command line interactive client for gopher written in Common LISP HTML git clone git://bitreich.org/clic/ git://hg6vgqziawt5s4dj.onion/clic/ DIR Log DIR Files DIR Refs DIR Tags DIR LICENSE --- tsequences.lisp (24604B) --- 1 (in-package :alexandria) 2 3 ;; Make these inlinable by declaiming them INLINE here and some of them 4 ;; NOTINLINE at the end of the file. Exclude functions that have a compiler 5 ;; macro, because NOTINLINE is required to prevent compiler-macro expansion. 6 (declaim (inline copy-sequence sequence-of-length-p)) 7 8 (defun sequence-of-length-p (sequence length) 9 "Return true if SEQUENCE is a sequence of length LENGTH. Signals an error if 10 SEQUENCE is not a sequence. Returns FALSE for circular lists." 11 (declare (type array-index length) 12 #-lispworks (inline length) 13 (optimize speed)) 14 (etypecase sequence 15 (null 16 (zerop length)) 17 (cons 18 (let ((n (1- length))) 19 (unless (minusp n) 20 (let ((tail (nthcdr n sequence))) 21 (and tail 22 (null (cdr tail))))))) 23 (vector 24 (= length (length sequence))) 25 (sequence 26 (= length (length sequence))))) 27 28 (defun rotate-tail-to-head (sequence n) 29 (declare (type (integer 1) n)) 30 (if (listp sequence) 31 (let ((m (mod n (proper-list-length sequence)))) 32 (if (null (cdr sequence)) 33 sequence 34 (let* ((tail (last sequence (+ m 1))) 35 (last (cdr tail))) 36 (setf (cdr tail) nil) 37 (nconc last sequence)))) 38 (let* ((len (length sequence)) 39 (m (mod n len)) 40 (tail (subseq sequence (- len m)))) 41 (replace sequence sequence :start1 m :start2 0) 42 (replace sequence tail) 43 sequence))) 44 45 (defun rotate-head-to-tail (sequence n) 46 (declare (type (integer 1) n)) 47 (if (listp sequence) 48 (let ((m (mod (1- n) (proper-list-length sequence)))) 49 (if (null (cdr sequence)) 50 sequence 51 (let* ((headtail (nthcdr m sequence)) 52 (tail (cdr headtail))) 53 (setf (cdr headtail) nil) 54 (nconc tail sequence)))) 55 (let* ((len (length sequence)) 56 (m (mod n len)) 57 (head (subseq sequence 0 m))) 58 (replace sequence sequence :start1 0 :start2 m) 59 (replace sequence head :start1 (- len m)) 60 sequence))) 61 62 (defun rotate (sequence &optional (n 1)) 63 "Returns a sequence of the same type as SEQUENCE, with the elements of 64 SEQUENCE rotated by N: N elements are moved from the end of the sequence to 65 the front if N is positive, and -N elements moved from the front to the end if 66 N is negative. SEQUENCE must be a proper sequence. N must be an integer, 67 defaulting to 1. 68 69 If absolute value of N is greater then the length of the sequence, the results 70 are identical to calling ROTATE with 71 72 (* (signum n) (mod n (length sequence))). 73 74 Note: the original sequence may be destructively altered, and result sequence may 75 share structure with it." 76 (if (plusp n) 77 (rotate-tail-to-head sequence n) 78 (if (minusp n) 79 (rotate-head-to-tail sequence (- n)) 80 sequence))) 81 82 (defun shuffle (sequence &key (start 0) end) 83 "Returns a random permutation of SEQUENCE bounded by START and END. 84 Original sequence may be destructively modified, and (if it contains 85 CONS or lists themselv) share storage with the original one. 86 Signals an error if SEQUENCE is not a proper sequence." 87 (declare (type fixnum start) 88 (type (or fixnum null) end)) 89 (etypecase sequence 90 (list 91 (let* ((end (or end (proper-list-length sequence))) 92 (n (- end start))) 93 (do ((tail (nthcdr start sequence) (cdr tail))) 94 ((zerop n)) 95 (rotatef (car tail) (car (nthcdr (random n) tail))) 96 (decf n)))) 97 (vector 98 (let ((end (or end (length sequence)))) 99 (loop for i from start below end 100 do (rotatef (aref sequence i) 101 (aref sequence (+ i (random (- end i)))))))) 102 (sequence 103 (let ((end (or end (length sequence)))) 104 (loop for i from (- end 1) downto start 105 do (rotatef (elt sequence i) 106 (elt sequence (+ i (random (- end i))))))))) 107 sequence) 108 109 (defun random-elt (sequence &key (start 0) end) 110 "Returns a random element from SEQUENCE bounded by START and END. Signals an 111 error if the SEQUENCE is not a proper non-empty sequence, or if END and START 112 are not proper bounding index designators for SEQUENCE." 113 (declare (sequence sequence) (fixnum start) (type (or fixnum null) end)) 114 (let* ((size (if (listp sequence) 115 (proper-list-length sequence) 116 (length sequence))) 117 (end2 (or end size))) 118 (cond ((zerop size) 119 (error 'type-error 120 :datum sequence 121 :expected-type `(and sequence (not (satisfies emptyp))))) 122 ((not (and (<= 0 start) (< start end2) (<= end2 size))) 123 (error 'simple-type-error 124 :datum (cons start end) 125 :expected-type `(cons (integer 0 (,end2)) 126 (or null (integer (,start) ,size))) 127 :format-control "~@<~S and ~S are not valid bounding index designators for ~ 128 a sequence of length ~S.~:@>" 129 :format-arguments (list start end size))) 130 (t 131 (let ((index (+ start (random (- end2 start))))) 132 (elt sequence index)))))) 133 134 (declaim (inline remove/swapped-arguments)) 135 (defun remove/swapped-arguments (sequence item &rest keyword-arguments) 136 (apply #'remove item sequence keyword-arguments)) 137 138 (define-modify-macro removef (item &rest keyword-arguments) 139 remove/swapped-arguments 140 "Modify-macro for REMOVE. Sets place designated by the first argument to 141 the result of calling REMOVE with ITEM, place, and the KEYWORD-ARGUMENTS.") 142 143 (declaim (inline delete/swapped-arguments)) 144 (defun delete/swapped-arguments (sequence item &rest keyword-arguments) 145 (apply #'delete item sequence keyword-arguments)) 146 147 (define-modify-macro deletef (item &rest keyword-arguments) 148 delete/swapped-arguments 149 "Modify-macro for DELETE. Sets place designated by the first argument to 150 the result of calling DELETE with ITEM, place, and the KEYWORD-ARGUMENTS.") 151 152 (deftype proper-sequence () 153 "Type designator for proper sequences, that is proper lists and sequences 154 that are not lists." 155 `(or proper-list 156 (and (not list) sequence))) 157 158 (eval-when (:compile-toplevel :load-toplevel :execute) 159 (when (and (find-package '#:sequence) 160 (find-symbol (string '#:emptyp) '#:sequence)) 161 (pushnew 'sequence-emptyp *features*))) 162 163 #-alexandria::sequence-emptyp 164 (defun emptyp (sequence) 165 "Returns true if SEQUENCE is an empty sequence. Signals an error if SEQUENCE 166 is not a sequence." 167 (etypecase sequence 168 (list (null sequence)) 169 (sequence (zerop (length sequence))))) 170 171 #+alexandria::sequence-emptyp 172 (declaim (ftype (function (sequence) (values boolean &optional)) emptyp)) 173 #+alexandria::sequence-emptyp 174 (setf (symbol-function 'emptyp) (symbol-function 'sequence:emptyp)) 175 #+alexandria::sequence-emptyp 176 (define-compiler-macro emptyp (sequence) 177 `(sequence:emptyp ,sequence)) 178 179 (defun length= (&rest sequences) 180 "Takes any number of sequences or integers in any order. Returns true iff 181 the length of all the sequences and the integers are equal. Hint: there's a 182 compiler macro that expands into more efficient code if the first argument 183 is a literal integer." 184 (declare (dynamic-extent sequences) 185 (inline sequence-of-length-p) 186 (optimize speed)) 187 (unless (cdr sequences) 188 (error "You must call LENGTH= with at least two arguments")) 189 ;; There's room for optimization here: multiple list arguments could be 190 ;; traversed in parallel. 191 (let* ((first (pop sequences)) 192 (current (if (integerp first) 193 first 194 (length first)))) 195 (declare (type array-index current)) 196 (dolist (el sequences) 197 (if (integerp el) 198 (unless (= el current) 199 (return-from length= nil)) 200 (unless (sequence-of-length-p el current) 201 (return-from length= nil))))) 202 t) 203 204 (define-compiler-macro length= (&whole form length &rest sequences) 205 (cond 206 ((zerop (length sequences)) 207 form) 208 (t 209 (let ((optimizedp (integerp length))) 210 (with-unique-names (tmp current) 211 (declare (ignorable current)) 212 `(locally 213 (declare (inline sequence-of-length-p)) 214 (let ((,tmp) 215 ,@(unless optimizedp 216 `((,current ,length)))) 217 ,@(unless optimizedp 218 `((unless (integerp ,current) 219 (setf ,current (length ,current))))) 220 (and 221 ,@(loop 222 :for sequence :in sequences 223 :collect `(progn 224 (setf ,tmp ,sequence) 225 (if (integerp ,tmp) 226 (= ,tmp ,(if optimizedp 227 length 228 current)) 229 (sequence-of-length-p ,tmp ,(if optimizedp 230 length 231 current))))))))))))) 232 233 (defun copy-sequence (type sequence) 234 "Returns a fresh sequence of TYPE, which has the same elements as 235 SEQUENCE." 236 (if (typep sequence type) 237 (copy-seq sequence) 238 (coerce sequence type))) 239 240 (defun first-elt (sequence) 241 "Returns the first element of SEQUENCE. Signals a type-error if SEQUENCE is 242 not a sequence, or is an empty sequence." 243 ;; Can't just directly use ELT, as it is not guaranteed to signal the 244 ;; type-error. 245 (cond ((consp sequence) 246 (car sequence)) 247 ((and (typep sequence 'sequence) (not (emptyp sequence))) 248 (elt sequence 0)) 249 (t 250 (error 'type-error 251 :datum sequence 252 :expected-type '(and sequence (not (satisfies emptyp))))))) 253 254 (defun (setf first-elt) (object sequence) 255 "Sets the first element of SEQUENCE. Signals a type-error if SEQUENCE is 256 not a sequence, is an empty sequence, or if OBJECT cannot be stored in SEQUENCE." 257 ;; Can't just directly use ELT, as it is not guaranteed to signal the 258 ;; type-error. 259 (cond ((consp sequence) 260 (setf (car sequence) object)) 261 ((and (typep sequence 'sequence) (not (emptyp sequence))) 262 (setf (elt sequence 0) object)) 263 (t 264 (error 'type-error 265 :datum sequence 266 :expected-type '(and sequence (not (satisfies emptyp))))))) 267 268 (defun last-elt (sequence) 269 "Returns the last element of SEQUENCE. Signals a type-error if SEQUENCE is 270 not a proper sequence, or is an empty sequence." 271 ;; Can't just directly use ELT, as it is not guaranteed to signal the 272 ;; type-error. 273 (let ((len 0)) 274 (cond ((consp sequence) 275 (lastcar sequence)) 276 ((and (typep sequence '(and sequence (not list))) (plusp (setf len (length sequence)))) 277 (elt sequence (1- len))) 278 (t 279 (error 'type-error 280 :datum sequence 281 :expected-type '(and proper-sequence (not (satisfies emptyp)))))))) 282 283 (defun (setf last-elt) (object sequence) 284 "Sets the last element of SEQUENCE. Signals a type-error if SEQUENCE is not a proper 285 sequence, is an empty sequence, or if OBJECT cannot be stored in SEQUENCE." 286 (let ((len 0)) 287 (cond ((consp sequence) 288 (setf (lastcar sequence) object)) 289 ((and (typep sequence '(and sequence (not list))) (plusp (setf len (length sequence)))) 290 (setf (elt sequence (1- len)) object)) 291 (t 292 (error 'type-error 293 :datum sequence 294 :expected-type '(and proper-sequence (not (satisfies emptyp)))))))) 295 296 (defun starts-with-subseq (prefix sequence &rest args 297 &key 298 (return-suffix nil return-suffix-supplied-p) 299 &allow-other-keys) 300 "Test whether the first elements of SEQUENCE are the same (as per TEST) as the elements of PREFIX. 301 302 If RETURN-SUFFIX is T the function returns, as a second value, a 303 sub-sequence or displaced array pointing to the sequence after PREFIX." 304 (declare (dynamic-extent args)) 305 (let ((sequence-length (length sequence)) 306 (prefix-length (length prefix))) 307 (when (< sequence-length prefix-length) 308 (return-from starts-with-subseq (values nil nil))) 309 (flet ((make-suffix (start) 310 (when return-suffix 311 (cond 312 ((not (arrayp sequence)) 313 (if start 314 (subseq sequence start) 315 (subseq sequence 0 0))) 316 ((not start) 317 (make-array 0 318 :element-type (array-element-type sequence) 319 :adjustable nil)) 320 (t 321 (make-array (- sequence-length start) 322 :element-type (array-element-type sequence) 323 :displaced-to sequence 324 :displaced-index-offset start 325 :adjustable nil)))))) 326 (let ((mismatch (apply #'mismatch prefix sequence 327 (if return-suffix-supplied-p 328 (remove-from-plist args :return-suffix) 329 args)))) 330 (cond 331 ((not mismatch) 332 (values t (make-suffix nil))) 333 ((= mismatch prefix-length) 334 (values t (make-suffix mismatch))) 335 (t 336 (values nil nil))))))) 337 338 (defun ends-with-subseq (suffix sequence &key (test #'eql)) 339 "Test whether SEQUENCE ends with SUFFIX. In other words: return true if 340 the last (length SUFFIX) elements of SEQUENCE are equal to SUFFIX." 341 (let ((sequence-length (length sequence)) 342 (suffix-length (length suffix))) 343 (when (< sequence-length suffix-length) 344 ;; if SEQUENCE is shorter than SUFFIX, then SEQUENCE can't end with SUFFIX. 345 (return-from ends-with-subseq nil)) 346 (loop for sequence-index from (- sequence-length suffix-length) below sequence-length 347 for suffix-index from 0 below suffix-length 348 when (not (funcall test (elt sequence sequence-index) (elt suffix suffix-index))) 349 do (return-from ends-with-subseq nil) 350 finally (return t)))) 351 352 (defun starts-with (object sequence &key (test #'eql) (key #'identity)) 353 "Returns true if SEQUENCE is a sequence whose first element is EQL to OBJECT. 354 Returns NIL if the SEQUENCE is not a sequence or is an empty sequence." 355 (let ((first-elt (typecase sequence 356 (cons (car sequence)) 357 (sequence 358 (if (emptyp sequence) 359 (return-from starts-with nil) 360 (elt sequence 0))) 361 (t 362 (return-from starts-with nil))))) 363 (funcall test (funcall key first-elt) object))) 364 365 (defun ends-with (object sequence &key (test #'eql) (key #'identity)) 366 "Returns true if SEQUENCE is a sequence whose last element is EQL to OBJECT. 367 Returns NIL if the SEQUENCE is not a sequence or is an empty sequence. Signals 368 an error if SEQUENCE is an improper list." 369 (let ((last-elt (typecase sequence 370 (cons 371 (lastcar sequence)) ; signals for improper lists 372 (sequence 373 ;; Can't use last-elt, as that signals an error 374 ;; for empty sequences 375 (let ((len (length sequence))) 376 (if (plusp len) 377 (elt sequence (1- len)) 378 (return-from ends-with nil)))) 379 (t 380 (return-from ends-with nil))))) 381 (funcall test (funcall key last-elt) object))) 382 383 (defun map-combinations (function sequence &key (start 0) end length (copy t)) 384 "Calls FUNCTION with each combination of LENGTH constructable from the 385 elements of the subsequence of SEQUENCE delimited by START and END. START 386 defaults to 0, END to length of SEQUENCE, and LENGTH to the length of the 387 delimited subsequence. (So unless LENGTH is specified there is only a single 388 combination, which has the same elements as the delimited subsequence.) If 389 COPY is true (the default) each combination is freshly allocated. If COPY is 390 false all combinations are EQ to each other, in which case consequences are 391 unspecified if a combination is modified by FUNCTION." 392 (let* ((end (or end (length sequence))) 393 (size (- end start)) 394 (length (or length size)) 395 (combination (subseq sequence 0 length)) 396 (function (ensure-function function))) 397 (if (= length size) 398 (funcall function combination) 399 (flet ((call () 400 (funcall function (if copy 401 (copy-seq combination) 402 combination)))) 403 (etypecase sequence 404 ;; When dealing with lists we prefer walking back and 405 ;; forth instead of using indexes. 406 (list 407 (labels ((combine-list (c-tail o-tail) 408 (if (not c-tail) 409 (call) 410 (do ((tail o-tail (cdr tail))) 411 ((not tail)) 412 (setf (car c-tail) (car tail)) 413 (combine-list (cdr c-tail) (cdr tail)))))) 414 (combine-list combination (nthcdr start sequence)))) 415 (vector 416 (labels ((combine (count start) 417 (if (zerop count) 418 (call) 419 (loop for i from start below end 420 do (let ((j (- count 1))) 421 (setf (aref combination j) (aref sequence i)) 422 (combine j (+ i 1))))))) 423 (combine length start))) 424 (sequence 425 (labels ((combine (count start) 426 (if (zerop count) 427 (call) 428 (loop for i from start below end 429 do (let ((j (- count 1))) 430 (setf (elt combination j) (elt sequence i)) 431 (combine j (+ i 1))))))) 432 (combine length start))))))) 433 sequence) 434 435 (defun map-permutations (function sequence &key (start 0) end length (copy t)) 436 "Calls function with each permutation of LENGTH constructable 437 from the subsequence of SEQUENCE delimited by START and END. START 438 defaults to 0, END to length of the sequence, and LENGTH to the 439 length of the delimited subsequence." 440 (let* ((end (or end (length sequence))) 441 (size (- end start)) 442 (length (or length size))) 443 (labels ((permute (seq n) 444 (let ((n-1 (- n 1))) 445 (if (zerop n-1) 446 (funcall function (if copy 447 (copy-seq seq) 448 seq)) 449 (loop for i from 0 upto n-1 450 do (permute seq n-1) 451 (if (evenp n-1) 452 (rotatef (elt seq 0) (elt seq n-1)) 453 (rotatef (elt seq i) (elt seq n-1))))))) 454 (permute-sequence (seq) 455 (permute seq length))) 456 (if (= length size) 457 ;; Things are simple if we need to just permute the 458 ;; full START-END range. 459 (permute-sequence (subseq sequence start end)) 460 ;; Otherwise we need to generate all the combinations 461 ;; of LENGTH in the START-END range, and then permute 462 ;; a copy of the result: can't permute the combination 463 ;; directly, as they share structure with each other. 464 (let ((permutation (subseq sequence 0 length))) 465 (flet ((permute-combination (combination) 466 (permute-sequence (replace permutation combination)))) 467 (declare (dynamic-extent #'permute-combination)) 468 (map-combinations #'permute-combination sequence 469 :start start 470 :end end 471 :length length 472 :copy nil))))))) 473 474 (defun map-derangements (function sequence &key (start 0) end (copy t)) 475 "Calls FUNCTION with each derangement of the subsequence of SEQUENCE denoted 476 by the bounding index designators START and END. Derangement is a permutation 477 of the sequence where no element remains in place. SEQUENCE is not modified, 478 but individual derangements are EQ to each other. Consequences are unspecified 479 if calling FUNCTION modifies either the derangement or SEQUENCE." 480 (let* ((end (or end (length sequence))) 481 (size (- end start)) 482 ;; We don't really care about the elements here. 483 (derangement (subseq sequence 0 size)) 484 ;; Bitvector that has 1 for elements that have been deranged. 485 (mask (make-array size :element-type 'bit :initial-element 0))) 486 (declare (dynamic-extent mask)) 487 ;; ad hoc algorith 488 (labels ((derange (place n) 489 ;; Perform one recursive step in deranging the 490 ;; sequence: PLACE is index of the original sequence 491 ;; to derange to another index, and N is the number of 492 ;; indexes not yet deranged. 493 (if (zerop n) 494 (funcall function (if copy 495 (copy-seq derangement) 496 derangement)) 497 ;; Itarate over the indexes I of the subsequence to 498 ;; derange: if I != PLACE and I has not yet been 499 ;; deranged by an earlier call put the element from 500 ;; PLACE to I, mark I as deranged, and recurse, 501 ;; finally removing the mark. 502 (loop for i from 0 below size 503 do 504 (unless (or (= place (+ i start)) (not (zerop (bit mask i)))) 505 (setf (elt derangement i) (elt sequence place) 506 (bit mask i) 1) 507 (derange (1+ place) (1- n)) 508 (setf (bit mask i) 0)))))) 509 (derange start size) 510 sequence))) 511 512 (declaim (notinline sequence-of-length-p)) 513 514 (defun extremum (sequence predicate &key key (start 0) end) 515 "Returns the element of SEQUENCE that would appear first if the subsequence 516 bounded by START and END was sorted using PREDICATE and KEY. 517 518 EXTREMUM determines the relationship between two elements of SEQUENCE by using 519 the PREDICATE function. PREDICATE should return true if and only if the first 520 argument is strictly less than the second one (in some appropriate sense). Two 521 arguments X and Y are considered to be equal if (FUNCALL PREDICATE X Y) 522 and (FUNCALL PREDICATE Y X) are both false. 523 524 The arguments to the PREDICATE function are computed from elements of SEQUENCE 525 using the KEY function, if supplied. If KEY is not supplied or is NIL, the 526 sequence element itself is used. 527 528 If SEQUENCE is empty, NIL is returned." 529 (let* ((pred-fun (ensure-function predicate)) 530 (key-fun (unless (or (not key) (eq key 'identity) (eq key #'identity)) 531 (ensure-function key))) 532 (real-end (or end (length sequence)))) 533 (cond ((> real-end start) 534 (if key-fun 535 (flet ((reduce-keys (a b) 536 (if (funcall pred-fun 537 (funcall key-fun a) 538 (funcall key-fun b)) 539 a 540 b))) 541 (declare (dynamic-extent #'reduce-keys)) 542 (reduce #'reduce-keys sequence :start start :end real-end)) 543 (flet ((reduce-elts (a b) 544 (if (funcall pred-fun a b) 545 a 546 b))) 547 (declare (dynamic-extent #'reduce-elts)) 548 (reduce #'reduce-elts sequence :start start :end real-end)))) 549 ((= real-end start) 550 nil) 551 (t 552 (error "Invalid bounding indexes for sequence of length ~S: ~S ~S, ~S ~S" 553 (length sequence) 554 :start start 555 :end end)))))