URI: 
       tsequences.lisp - clic - Clic is an command line interactive client for gopher written in Common LISP
  HTML git clone git://bitreich.org/clic/ git://hg6vgqziawt5s4dj.onion/clic/
   DIR Log
   DIR Files
   DIR Refs
   DIR Tags
   DIR LICENSE
       ---
       tsequences.lisp (24604B)
       ---
            1 (in-package :alexandria)
            2 
            3 ;; Make these inlinable by declaiming them INLINE here and some of them
            4 ;; NOTINLINE at the end of the file. Exclude functions that have a compiler
            5 ;; macro, because NOTINLINE is required to prevent compiler-macro expansion.
            6 (declaim (inline copy-sequence sequence-of-length-p))
            7 
            8 (defun sequence-of-length-p (sequence length)
            9   "Return true if SEQUENCE is a sequence of length LENGTH. Signals an error if
           10 SEQUENCE is not a sequence. Returns FALSE for circular lists."
           11   (declare (type array-index length)
           12            #-lispworks (inline length)
           13            (optimize speed))
           14   (etypecase sequence
           15     (null
           16      (zerop length))
           17     (cons
           18      (let ((n (1- length)))
           19        (unless (minusp n)
           20          (let ((tail (nthcdr n sequence)))
           21            (and tail
           22                 (null (cdr tail)))))))
           23     (vector
           24      (= length (length sequence)))
           25     (sequence
           26      (= length (length sequence)))))
           27 
           28 (defun rotate-tail-to-head (sequence n)
           29   (declare (type (integer 1) n))
           30   (if (listp sequence)
           31       (let ((m (mod n (proper-list-length sequence))))
           32         (if (null (cdr sequence))
           33             sequence
           34             (let* ((tail (last sequence (+ m 1)))
           35                    (last (cdr tail)))
           36               (setf (cdr tail) nil)
           37               (nconc last sequence))))
           38       (let* ((len (length sequence))
           39              (m (mod n len))
           40              (tail (subseq sequence (- len m))))
           41         (replace sequence sequence :start1 m :start2 0)
           42         (replace sequence tail)
           43         sequence)))
           44 
           45 (defun rotate-head-to-tail (sequence n)
           46   (declare (type (integer 1) n))
           47   (if (listp sequence)
           48       (let ((m (mod (1- n) (proper-list-length sequence))))
           49         (if (null (cdr sequence))
           50             sequence
           51             (let* ((headtail (nthcdr m sequence))
           52                    (tail (cdr headtail)))
           53               (setf (cdr headtail) nil)
           54               (nconc tail sequence))))
           55       (let* ((len (length sequence))
           56              (m (mod n len))
           57              (head (subseq sequence 0 m)))
           58         (replace sequence sequence :start1 0 :start2 m)
           59         (replace sequence head :start1 (- len m))
           60         sequence)))
           61 
           62 (defun rotate (sequence &optional (n 1))
           63   "Returns a sequence of the same type as SEQUENCE, with the elements of
           64 SEQUENCE rotated by N: N elements are moved from the end of the sequence to
           65 the front if N is positive, and -N elements moved from the front to the end if
           66 N is negative. SEQUENCE must be a proper sequence. N must be an integer,
           67 defaulting to 1.
           68 
           69 If absolute value of N is greater then the length of the sequence, the results
           70 are identical to calling ROTATE with
           71 
           72   (* (signum n) (mod n (length sequence))).
           73 
           74 Note: the original sequence may be destructively altered, and result sequence may
           75 share structure with it."
           76   (if (plusp n)
           77       (rotate-tail-to-head sequence n)
           78       (if (minusp n)
           79           (rotate-head-to-tail sequence (- n))
           80           sequence)))
           81 
           82 (defun shuffle (sequence &key (start 0) end)
           83   "Returns a random permutation of SEQUENCE bounded by START and END.
           84 Original sequence may be destructively modified, and (if it contains
           85 CONS or lists themselv) share storage with the original one.
           86 Signals an error if SEQUENCE is not a proper sequence."
           87   (declare (type fixnum start)
           88            (type (or fixnum null) end))
           89   (etypecase sequence
           90     (list
           91      (let* ((end (or end (proper-list-length sequence)))
           92             (n (- end start)))
           93        (do ((tail (nthcdr start sequence) (cdr tail)))
           94            ((zerop n))
           95          (rotatef (car tail) (car (nthcdr (random n) tail)))
           96          (decf n))))
           97     (vector
           98      (let ((end (or end (length sequence))))
           99        (loop for i from start below end
          100              do (rotatef (aref sequence i)
          101                          (aref sequence (+ i (random (- end i))))))))
          102     (sequence
          103      (let ((end (or end (length sequence))))
          104        (loop for i from (- end 1) downto start
          105              do (rotatef (elt sequence i)
          106                          (elt sequence (+ i (random (- end i)))))))))
          107   sequence)
          108 
          109 (defun random-elt (sequence &key (start 0) end)
          110   "Returns a random element from SEQUENCE bounded by START and END. Signals an
          111 error if the SEQUENCE is not a proper non-empty sequence, or if END and START
          112 are not proper bounding index designators for SEQUENCE."
          113   (declare (sequence sequence) (fixnum start) (type (or fixnum null) end))
          114   (let* ((size (if (listp sequence)
          115                    (proper-list-length sequence)
          116                    (length sequence)))
          117          (end2 (or end size)))
          118     (cond ((zerop size)
          119            (error 'type-error
          120                   :datum sequence
          121                   :expected-type `(and sequence (not (satisfies emptyp)))))
          122           ((not (and (<= 0 start) (< start end2) (<= end2 size)))
          123            (error 'simple-type-error
          124                   :datum (cons start end)
          125                   :expected-type `(cons (integer 0 (,end2))
          126                                         (or null (integer (,start) ,size)))
          127                   :format-control "~@<~S and ~S are not valid bounding index designators for ~
          128                                    a sequence of length ~S.~:@>"
          129                   :format-arguments (list start end size)))
          130           (t
          131            (let ((index (+ start (random (- end2 start)))))
          132              (elt sequence index))))))
          133 
          134 (declaim (inline remove/swapped-arguments))
          135 (defun remove/swapped-arguments (sequence item &rest keyword-arguments)
          136   (apply #'remove item sequence keyword-arguments))
          137 
          138 (define-modify-macro removef (item &rest keyword-arguments)
          139   remove/swapped-arguments
          140   "Modify-macro for REMOVE. Sets place designated by the first argument to
          141 the result of calling REMOVE with ITEM, place, and the KEYWORD-ARGUMENTS.")
          142 
          143 (declaim (inline delete/swapped-arguments))
          144 (defun delete/swapped-arguments (sequence item &rest keyword-arguments)
          145   (apply #'delete item sequence keyword-arguments))
          146 
          147 (define-modify-macro deletef (item &rest keyword-arguments)
          148   delete/swapped-arguments
          149   "Modify-macro for DELETE. Sets place designated by the first argument to
          150 the result of calling DELETE with ITEM, place, and the KEYWORD-ARGUMENTS.")
          151 
          152 (deftype proper-sequence ()
          153   "Type designator for proper sequences, that is proper lists and sequences
          154 that are not lists."
          155   `(or proper-list
          156        (and (not list) sequence)))
          157 
          158 (eval-when (:compile-toplevel :load-toplevel :execute)
          159   (when (and (find-package '#:sequence)
          160              (find-symbol (string '#:emptyp) '#:sequence))
          161     (pushnew 'sequence-emptyp *features*)))
          162 
          163 #-alexandria::sequence-emptyp
          164 (defun emptyp (sequence)
          165   "Returns true if SEQUENCE is an empty sequence. Signals an error if SEQUENCE
          166 is not a sequence."
          167   (etypecase sequence
          168     (list (null sequence))
          169     (sequence (zerop (length sequence)))))
          170 
          171 #+alexandria::sequence-emptyp
          172 (declaim (ftype (function (sequence) (values boolean &optional)) emptyp))
          173 #+alexandria::sequence-emptyp
          174 (setf (symbol-function 'emptyp) (symbol-function 'sequence:emptyp))
          175 #+alexandria::sequence-emptyp
          176 (define-compiler-macro emptyp (sequence)
          177   `(sequence:emptyp ,sequence))
          178 
          179 (defun length= (&rest sequences)
          180   "Takes any number of sequences or integers in any order. Returns true iff
          181 the length of all the sequences and the integers are equal. Hint: there's a
          182 compiler macro that expands into more efficient code if the first argument
          183 is a literal integer."
          184   (declare (dynamic-extent sequences)
          185            (inline sequence-of-length-p)
          186            (optimize speed))
          187   (unless (cdr sequences)
          188     (error "You must call LENGTH= with at least two arguments"))
          189   ;; There's room for optimization here: multiple list arguments could be
          190   ;; traversed in parallel.
          191   (let* ((first (pop sequences))
          192          (current (if (integerp first)
          193                       first
          194                       (length first))))
          195     (declare (type array-index current))
          196     (dolist (el sequences)
          197       (if (integerp el)
          198           (unless (= el current)
          199             (return-from length= nil))
          200           (unless (sequence-of-length-p el current)
          201             (return-from length= nil)))))
          202   t)
          203 
          204 (define-compiler-macro length= (&whole form length &rest sequences)
          205   (cond
          206     ((zerop (length sequences))
          207      form)
          208     (t
          209      (let ((optimizedp (integerp length)))
          210        (with-unique-names (tmp current)
          211          (declare (ignorable current))
          212          `(locally
          213               (declare (inline sequence-of-length-p))
          214             (let ((,tmp)
          215                   ,@(unless optimizedp
          216                      `((,current ,length))))
          217               ,@(unless optimizedp
          218                   `((unless (integerp ,current)
          219                       (setf ,current (length ,current)))))
          220               (and
          221                ,@(loop
          222                     :for sequence :in sequences
          223                     :collect `(progn
          224                                 (setf ,tmp ,sequence)
          225                                 (if (integerp ,tmp)
          226                                     (= ,tmp ,(if optimizedp
          227                                                  length
          228                                                  current))
          229                                     (sequence-of-length-p ,tmp ,(if optimizedp
          230                                                                     length
          231                                                                     current)))))))))))))
          232 
          233 (defun copy-sequence (type sequence)
          234   "Returns a fresh sequence of TYPE, which has the same elements as
          235 SEQUENCE."
          236   (if (typep sequence type)
          237       (copy-seq sequence)
          238       (coerce sequence type)))
          239 
          240 (defun first-elt (sequence)
          241   "Returns the first element of SEQUENCE. Signals a type-error if SEQUENCE is
          242 not a sequence, or is an empty sequence."
          243   ;; Can't just directly use ELT, as it is not guaranteed to signal the
          244   ;; type-error.
          245   (cond  ((consp sequence)
          246           (car sequence))
          247          ((and (typep sequence 'sequence) (not (emptyp sequence)))
          248           (elt sequence 0))
          249          (t
          250           (error 'type-error
          251                  :datum sequence
          252                  :expected-type '(and sequence (not (satisfies emptyp)))))))
          253 
          254 (defun (setf first-elt) (object sequence)
          255   "Sets the first element of SEQUENCE. Signals a type-error if SEQUENCE is
          256 not a sequence, is an empty sequence, or if OBJECT cannot be stored in SEQUENCE."
          257   ;; Can't just directly use ELT, as it is not guaranteed to signal the
          258   ;; type-error.
          259   (cond ((consp sequence)
          260          (setf (car sequence) object))
          261         ((and (typep sequence 'sequence) (not (emptyp sequence)))
          262          (setf (elt sequence 0) object))
          263         (t
          264          (error 'type-error
          265                 :datum sequence
          266                 :expected-type '(and sequence (not (satisfies emptyp)))))))
          267 
          268 (defun last-elt (sequence)
          269   "Returns the last element of SEQUENCE. Signals a type-error if SEQUENCE is
          270 not a proper sequence, or is an empty sequence."
          271   ;; Can't just directly use ELT, as it is not guaranteed to signal the
          272   ;; type-error.
          273   (let ((len 0))
          274     (cond ((consp sequence)
          275            (lastcar sequence))
          276           ((and (typep sequence '(and sequence (not list))) (plusp (setf len (length sequence))))
          277            (elt sequence (1- len)))
          278           (t
          279            (error 'type-error
          280                   :datum sequence
          281                   :expected-type '(and proper-sequence (not (satisfies emptyp))))))))
          282 
          283 (defun (setf last-elt) (object sequence)
          284   "Sets the last element of SEQUENCE. Signals a type-error if SEQUENCE is not a proper
          285 sequence, is an empty sequence, or if OBJECT cannot be stored in SEQUENCE."
          286   (let ((len 0))
          287     (cond ((consp sequence)
          288            (setf (lastcar sequence) object))
          289           ((and (typep sequence '(and sequence (not list))) (plusp (setf len (length sequence))))
          290            (setf (elt sequence (1- len)) object))
          291           (t
          292            (error 'type-error
          293                   :datum sequence
          294                   :expected-type '(and proper-sequence (not (satisfies emptyp))))))))
          295 
          296 (defun starts-with-subseq (prefix sequence &rest args
          297                            &key
          298                            (return-suffix nil return-suffix-supplied-p)
          299                            &allow-other-keys)
          300   "Test whether the first elements of SEQUENCE are the same (as per TEST) as the elements of PREFIX.
          301 
          302 If RETURN-SUFFIX is T the function returns, as a second value, a
          303 sub-sequence or displaced array pointing to the sequence after PREFIX."
          304   (declare (dynamic-extent args))
          305   (let ((sequence-length (length sequence))
          306         (prefix-length (length prefix)))
          307     (when (< sequence-length prefix-length)
          308       (return-from starts-with-subseq (values nil nil)))
          309     (flet ((make-suffix (start)
          310              (when return-suffix
          311                (cond
          312                  ((not (arrayp sequence))
          313                   (if start
          314                       (subseq sequence start)
          315                       (subseq sequence 0 0)))
          316                  ((not start)
          317                   (make-array 0
          318                               :element-type (array-element-type sequence)
          319                               :adjustable nil))
          320                  (t
          321                   (make-array (- sequence-length start)
          322                               :element-type (array-element-type sequence)
          323                               :displaced-to sequence
          324                               :displaced-index-offset start
          325                               :adjustable nil))))))
          326       (let ((mismatch (apply #'mismatch prefix sequence
          327                              (if return-suffix-supplied-p
          328                                  (remove-from-plist args :return-suffix)
          329                                  args))))
          330         (cond
          331           ((not mismatch)
          332            (values t (make-suffix nil)))
          333           ((= mismatch prefix-length)
          334            (values t (make-suffix mismatch)))
          335           (t
          336            (values nil nil)))))))
          337 
          338 (defun ends-with-subseq (suffix sequence &key (test #'eql))
          339   "Test whether SEQUENCE ends with SUFFIX. In other words: return true if
          340 the last (length SUFFIX) elements of SEQUENCE are equal to SUFFIX."
          341   (let ((sequence-length (length sequence))
          342         (suffix-length (length suffix)))
          343     (when (< sequence-length suffix-length)
          344       ;; if SEQUENCE is shorter than SUFFIX, then SEQUENCE can't end with SUFFIX.
          345       (return-from ends-with-subseq nil))
          346     (loop for sequence-index from (- sequence-length suffix-length) below sequence-length
          347           for suffix-index from 0 below suffix-length
          348           when (not (funcall test (elt sequence sequence-index) (elt suffix suffix-index)))
          349           do (return-from ends-with-subseq nil)
          350           finally (return t))))
          351 
          352 (defun starts-with (object sequence &key (test #'eql) (key #'identity))
          353   "Returns true if SEQUENCE is a sequence whose first element is EQL to OBJECT.
          354 Returns NIL if the SEQUENCE is not a sequence or is an empty sequence."
          355   (let ((first-elt (typecase sequence
          356                      (cons (car sequence))
          357                      (sequence
          358                       (if (emptyp sequence)
          359                           (return-from starts-with nil)
          360                           (elt sequence 0)))
          361                      (t
          362                       (return-from starts-with nil)))))
          363     (funcall test (funcall key first-elt) object)))
          364 
          365 (defun ends-with (object sequence &key (test #'eql) (key #'identity))
          366   "Returns true if SEQUENCE is a sequence whose last element is EQL to OBJECT.
          367 Returns NIL if the SEQUENCE is not a sequence or is an empty sequence. Signals
          368 an error if SEQUENCE is an improper list."
          369   (let ((last-elt (typecase sequence
          370                     (cons
          371                      (lastcar sequence)) ; signals for improper lists
          372                     (sequence
          373                      ;; Can't use last-elt, as that signals an error
          374                      ;; for empty sequences
          375                      (let ((len (length sequence)))
          376                        (if (plusp len)
          377                            (elt sequence (1- len))
          378                            (return-from ends-with nil))))
          379                     (t
          380                      (return-from ends-with nil)))))
          381     (funcall test (funcall key last-elt) object)))
          382 
          383 (defun map-combinations (function sequence &key (start 0) end length (copy t))
          384   "Calls FUNCTION with each combination of LENGTH constructable from the
          385 elements of the subsequence of SEQUENCE delimited by START and END. START
          386 defaults to 0, END to length of SEQUENCE, and LENGTH to the length of the
          387 delimited subsequence. (So unless LENGTH is specified there is only a single
          388 combination, which has the same elements as the delimited subsequence.) If
          389 COPY is true (the default) each combination is freshly allocated. If COPY is
          390 false all combinations are EQ to each other, in which case consequences are
          391 unspecified if a combination is modified by FUNCTION."
          392   (let* ((end (or end (length sequence)))
          393          (size (- end start))
          394          (length (or length size))
          395          (combination (subseq sequence 0 length))
          396          (function (ensure-function function)))
          397     (if (= length size)
          398         (funcall function combination)
          399         (flet ((call ()
          400                  (funcall function (if copy
          401                                        (copy-seq combination)
          402                                        combination))))
          403           (etypecase sequence
          404             ;; When dealing with lists we prefer walking back and
          405             ;; forth instead of using indexes.
          406             (list
          407              (labels ((combine-list (c-tail o-tail)
          408                         (if (not c-tail)
          409                             (call)
          410                             (do ((tail o-tail (cdr tail)))
          411                                 ((not tail))
          412                               (setf (car c-tail) (car tail))
          413                               (combine-list (cdr c-tail) (cdr tail))))))
          414                (combine-list combination (nthcdr start sequence))))
          415             (vector
          416              (labels ((combine (count start)
          417                         (if (zerop count)
          418                             (call)
          419                             (loop for i from start below end
          420                                   do (let ((j (- count 1)))
          421                                        (setf (aref combination j) (aref sequence i))
          422                                        (combine j (+ i 1)))))))
          423                (combine length start)))
          424             (sequence
          425              (labels ((combine (count start)
          426                         (if (zerop count)
          427                             (call)
          428                             (loop for i from start below end
          429                                   do (let ((j (- count 1)))
          430                                        (setf (elt combination j) (elt sequence i))
          431                                        (combine j (+ i 1)))))))
          432                (combine length start)))))))
          433   sequence)
          434 
          435 (defun map-permutations (function sequence &key (start 0) end length (copy t))
          436   "Calls function with each permutation of LENGTH constructable
          437 from the subsequence of SEQUENCE delimited by START and END. START
          438 defaults to 0, END to length of the sequence, and LENGTH to the
          439 length of the delimited subsequence."
          440   (let* ((end (or end (length sequence)))
          441          (size (- end start))
          442          (length (or length size)))
          443     (labels ((permute (seq n)
          444                (let ((n-1 (- n 1)))
          445                  (if (zerop n-1)
          446                      (funcall function (if copy
          447                                            (copy-seq seq)
          448                                            seq))
          449                      (loop for i from 0 upto n-1
          450                            do (permute seq n-1)
          451                            (if (evenp n-1)
          452                                (rotatef (elt seq 0) (elt seq n-1))
          453                                (rotatef (elt seq i) (elt seq n-1)))))))
          454              (permute-sequence (seq)
          455                (permute seq length)))
          456       (if (= length size)
          457           ;; Things are simple if we need to just permute the
          458           ;; full START-END range.
          459           (permute-sequence (subseq sequence start end))
          460           ;; Otherwise we need to generate all the combinations
          461           ;; of LENGTH in the START-END range, and then permute
          462           ;; a copy of the result: can't permute the combination
          463           ;; directly, as they share structure with each other.
          464           (let ((permutation (subseq sequence 0 length)))
          465             (flet ((permute-combination (combination)
          466                      (permute-sequence (replace permutation combination))))
          467               (declare (dynamic-extent #'permute-combination))
          468               (map-combinations #'permute-combination sequence
          469                                 :start start
          470                                 :end end
          471                                 :length length
          472                                 :copy nil)))))))
          473 
          474 (defun map-derangements (function sequence &key (start 0) end (copy t))
          475   "Calls FUNCTION with each derangement of the subsequence of SEQUENCE denoted
          476 by the bounding index designators START and END. Derangement is a permutation
          477 of the sequence where no element remains in place. SEQUENCE is not modified,
          478 but individual derangements are EQ to each other. Consequences are unspecified
          479 if calling FUNCTION modifies either the derangement or SEQUENCE."
          480   (let* ((end (or end (length sequence)))
          481          (size (- end start))
          482          ;; We don't really care about the elements here.
          483          (derangement (subseq sequence 0 size))
          484          ;; Bitvector that has 1 for elements that have been deranged.
          485          (mask (make-array size :element-type 'bit :initial-element 0)))
          486     (declare (dynamic-extent mask))
          487     ;; ad hoc algorith
          488     (labels ((derange (place n)
          489                ;; Perform one recursive step in deranging the
          490                ;; sequence: PLACE is index of the original sequence
          491                ;; to derange to another index, and N is the number of
          492                ;; indexes not yet deranged.
          493                (if (zerop n)
          494                    (funcall function (if copy
          495                                          (copy-seq derangement)
          496                                          derangement))
          497                    ;; Itarate over the indexes I of the subsequence to
          498                    ;; derange: if I != PLACE and I has not yet been
          499                    ;; deranged by an earlier call put the element from
          500                    ;; PLACE to I, mark I as deranged, and recurse,
          501                    ;; finally removing the mark.
          502                    (loop for i from 0 below size
          503                          do
          504                          (unless (or (= place (+ i start)) (not (zerop (bit mask i))))
          505                            (setf (elt derangement i) (elt sequence place)
          506                                  (bit mask i) 1)
          507                            (derange (1+ place) (1- n))
          508                            (setf (bit mask i) 0))))))
          509       (derange start size)
          510       sequence)))
          511 
          512 (declaim (notinline sequence-of-length-p))
          513 
          514 (defun extremum (sequence predicate &key key (start 0) end)
          515   "Returns the element of SEQUENCE that would appear first if the subsequence
          516 bounded by START and END was sorted using PREDICATE and KEY.
          517 
          518 EXTREMUM determines the relationship between two elements of SEQUENCE by using
          519 the PREDICATE function. PREDICATE should return true if and only if the first
          520 argument is strictly less than the second one (in some appropriate sense). Two
          521 arguments X and Y are considered to be equal if (FUNCALL PREDICATE X Y)
          522 and (FUNCALL PREDICATE Y X) are both false.
          523 
          524 The arguments to the PREDICATE function are computed from elements of SEQUENCE
          525 using the KEY function, if supplied. If KEY is not supplied or is NIL, the
          526 sequence element itself is used.
          527 
          528 If SEQUENCE is empty, NIL is returned."
          529   (let* ((pred-fun (ensure-function predicate))
          530          (key-fun (unless (or (not key) (eq key 'identity) (eq key #'identity))
          531                     (ensure-function key)))
          532          (real-end (or end (length sequence))))
          533     (cond ((> real-end start)
          534            (if key-fun
          535                (flet ((reduce-keys (a b)
          536                         (if (funcall pred-fun
          537                                      (funcall key-fun a)
          538                                      (funcall key-fun b))
          539                             a
          540                             b)))
          541                  (declare (dynamic-extent #'reduce-keys))
          542                  (reduce #'reduce-keys sequence :start start :end real-end))
          543                (flet ((reduce-elts (a b)
          544                         (if (funcall pred-fun a b)
          545                             a
          546                             b)))
          547                  (declare (dynamic-extent #'reduce-elts))
          548                  (reduce #'reduce-elts sequence :start start :end real-end))))
          549           ((= real-end start)
          550            nil)
          551           (t
          552            (error "Invalid bounding indexes for sequence of length ~S: ~S ~S, ~S ~S"
          553                   (length sequence)
          554                   :start start
          555                   :end end)))))