Subj : Webb locates dust reservoirs in two supe To : All From : ScienceDaily Date : Wed Jul 05 2023 22:30:22 Webb locates dust reservoirs in two supernovae Date: July 5, 2023 Source: NASA/Goddard Space Flight Center Summary: Researchers have made major strides in confirming the source of dust in early galaxies. Observations of two Type II supernovae, Supernova 2004et (SN 2004et) and Supernova 2017eaw (SN 2017eaw), have revealed large amounts of dust within the ejecta of each of these objects. The mass found by researchers supports the theory that supernovae played a key role in supplying dust to the early universe. Facebook Twitter Pinterest LinkedIN Email ========================================================================== FULL STORY ========================================================================== Researchers using NASA's James Webb Space Telescope have made major strides in confirming the source of dust in early galaxies. Observations of two Type II supernovae, Supernova 2004et (SN 2004et) and Supernova 2017eaw (SN 2017eaw), have revealed large amounts of dust within the ejecta of each of these objects. The mass found by researchers supports the theory that supernovae played a key role in supplying dust to the early universe. Dust is a building block for many things in our universe -- planets in particular. As dust from dying stars spreads through space, it carries essential elements to help give birth to the next generation of stars and their planets. Where that dust comes from has puzzled astronomers for decades. One significant source of cosmic dust could be supernovae -- after the dying star explodes, its leftover gas expands and cools to create dust. "Direct evidence of this phenomenon has been slim up to this point, with our capabilities only allowing us to study the dust population in one relatively nearby supernova to date -- Supernova 1987A, 170,000 light-years away from Earth," said lead author Melissa Shahbandeh of Johns Hopkins University and the Space Telescope Science Institute in Baltimore, Maryland. "When the gas cools enough to form dust, that dust is only detectable at mid-infrared wavelengths provided you have enough sensitivity." For supernovae more distant than SN 1987A like SN 2004et and SN 2017eaw, both in NGC 6946 about 22 million light-years away, that combination of wavelength coverage and exquisite sensitivity can only be obtained with Webb's MIRI (Mid- Infrared Instrument). The Webb observations are the first breakthrough in the study of dust production from supernovae since the detection of newly formed dust in SN 1987A with the Atacama Large Millimeter/submillimeter Array (ALMA) telescope nearly a decade ago. Another particularly intriguing result of their study isn't just the detection of dust, but the amount of dust detected at this early stage in the supernova's life. In SN 2004et, the researchers found more than 5,000 Earth masses of dust. "When you look at the calculation of how much dust we're seeing in SN 2004et especially, it rivals the measurements in SN 1987A, and it's only a fraction of the age," added program lead Ori Fox of the Space Telescope Science Institute. "It's the highest dust mass detected in supernovae since SN 1987A." Observations have shown astronomers that young, distant galaxies are full of dust, but these galaxies are not old enough for intermediate mass stars, like the Sun, to have supplied the dust as they age. More massive, short-lived stars could have died soon enough and in large enough numbers to create that much dust. While astronomers have confirmed that supernovae produce dust, the question has lingered about how much of that dust can survive the internal shocks reverberating in the aftermath of the explosion. Seeing this amount of dust at this stage in the lifetimes of SN 2004et and SN 2017eaw suggests that dust can survive the shockwave -- evidence that supernovae really are important dust factories after all. Researchers also note that the current estimations of the mass may be the tip of the iceberg. While Webb has allowed researchers to measure dust cooler than ever before, there may be undetected, colder dust radiating even farther into the electromagnetic spectrum that remains obscured by the outermost layers of dust. The researchers emphasized that the new findings are also just a hint at newfound research capabilities into supernovae and their dust production using Webb, and what that can tell us about the stars from which they came. "There's a growing excitement to understand what this dust also implies about the core of the star that exploded," Fox said. "After looking at these particular findings, I think our fellow researchers are going to be thinking of innovative ways to work with these dusty supernovae in the future." SN 2004et and SN2017eaw are the first of five targets included in this program. The observations were completed as part of Webb General Observer program 2666. The paper was published in the Monthly Notices of the Royal Astronomical Society on July 5. * RELATED_TOPICS o Space_&_Time # Nebulae # Space_Telescopes # NASA # Astronomy # Stars # Black_Holes # Space_Exploration # Galaxies * RELATED_TERMS o Supernova o Interstellar_medium o Hubble_Deep_Field o Astronomy o Galaxy_formation_and_evolution o Galaxy o Shape_of_the_Universe o Quasar ========================================================================== Print Email Share ========================================================================== ****** 1 ****** ***** 2 ***** **** 3 **** *** 4 *** ** 5 ** Breaking this hour ========================================================================== * Why_Birds_Ancestors_Lived;_Other_Dinosaurs_Died * Dissolving_Cardiac_Device_Treats_Heart_Disease * Webb_Locates_Dust_Reservoirs_in_Two_Supernovae * Earth_Formed_from_Dry,_Rocky_Building_Blocks * Ancient_Volcanic_Activity_On_Moon's_Dark_Side * Highly_Conductive_Metallic_Gel_for_3D_Printing * Potent_Greenhouse_Gas_Could_Be_Abated_Today * Polymer_Brains_for_Artificial_Neural_Networks * Early_Apex_Predator_Sought_Soft_Over_... * Time_in_Universe_Once_Flowed_Five_Times_Slower Trending Topics this week ========================================================================== SPACE_&_TIME Black_Holes Astrophysics NASA MATTER_&_ENERGY Biochemistry Optics Petroleum COMPUTERS_&_MATH Communications Educational_Technology Computer_Modeling ========================================================================== Strange & Offbeat ========================================================================== SPACE_&_TIME Quasar_'Clocks'_Show_Universe_Was_Five_Times_Slower_Soon_After_the_Big_Bang First_'Ghost_Particle'_Image_of_Milky_Way Gullies_on_Mars_Could_Have_Been_Formed_by_Recent_Periods_of_Liquid_Meltwater, Study_Suggests MATTER_&_ENERGY Researchers_Create_Highly_Conductive_Metallic_Gel_for_3D_Printing Growing_Bio-Inspired_Polymer_Brains_for_Artificial_Neural_Networks Displays_Controlled_by_Flexible_Fins_and_Liquid_Droplets_More_Versatile, Efficient_Than_LED_Screens COMPUTERS_&_MATH AI_Tests_Into_Top_1%_for_Original_Creative_Thinking Turning_Old_Maps_Into_3D_Digital_Models_of_Lost_Neighborhoods NeuWS_Camera_Answers_'Holy_Grail_Problem'_in_Optical_Imaging Story Source: Materials provided by NASA/Goddard_Space_Flight_Center. Note: Content may be edited for style and length. ========================================================================== Related Multimedia: * Images_showing_large_amounts_of_dust_within_Supernova_2004et_and Supernova_2017eaw ========================================================================== Journal Reference: 1. Melissa Shahbandeh, Arkaprabha Sarangi, Tea Temim, Tama's Szalai, Ori D Fox, Samaporn Tinyanont, Eli Dwek, Luc Dessart, Alexei V Filippenko, Thomas G Brink, Ryan J Foley, Jacob Jencson, Justin Pierel, Szanna Zsi'ros, Armin Rest, WeiKang Zheng, Jennifer Andrews, Geoffrey C Clayton, Kishalay De, Michael Engesser, Suvi Gezari, Sebastian Gomez, Shireen Gonzaga, Joel Johansson, Mansi Kasliwal, Ryan Lau, Ilse De Looze, Anthony Marston, Dan Milisavljevic, Richard O'Steen, Matthew Siebert, Michael Skrutskie, Nathan Smith, Lou Strolger, Schuyler D Van Dyk, Qinan Wang, Brian Williams, Robert Williams, Lin Xiao, Yi Yang. JWST observations of dust reservoirs in type IIP supernovae 2004et and 2017eaw. Monthly Notices of the Royal Astronomical Society, 2023; 523 (4): 6048 DOI: 10.1093/mnras/stad1681 ========================================================================== Link to news story: https://www.sciencedaily.com/releases/2023/07/230705143005.htm --- up 1 year, 18 weeks, 2 days, 10 hours, 50 minutes * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3) .