#include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static complex c_b1 = {-1e10f,-1e10f}; static complex c_b10 = {0.f,0.f}; static complex c_b15 = {-1.f,0.f}; static complex c_b16 = {1.f,0.f}; static real c_b24 = -1.f; static real c_b25 = 1.f; /* Subroutine */ int cqrt01_(integer *m, integer *n, complex *a, complex *af, complex *q, complex *r__, integer *lda, complex *tau, complex *work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, r_offset, i__1; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ real eps; integer info; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *), cherk_(char *, char *, integer *, integer *, real *, complex *, integer *, real * , complex *, integer *); real resid, anorm; integer minmn; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), slamch_(char *); extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clacpy_( char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); extern doublereal clansy_(char *, char *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CQRT01 tests CGEQRF, which computes the QR factorization of an m-by-n */ /* matrix A, and partially tests CUNGQR which forms the m-by-m */ /* orthogonal matrix Q. */ /* CQRT01 compares R with Q'*A, and checks that Q is orthogonal. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* The m-by-n matrix A. */ /* AF (output) COMPLEX array, dimension (LDA,N) */ /* Details of the QR factorization of A, as returned by CGEQRF. */ /* See CGEQRF for further details. */ /* Q (output) COMPLEX array, dimension (LDA,M) */ /* The m-by-m orthogonal matrix Q. */ /* R (workspace) COMPLEX array, dimension (LDA,max(M,N)) */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A, AF, Q and R. */ /* LDA >= max(M,N). */ /* TAU (output) COMPLEX array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors, as returned */ /* by CGEQRF. */ /* WORK (workspace) COMPLEX array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* RWORK (workspace) REAL array, dimension (M) */ /* RESULT (output) REAL array, dimension (2) */ /* The test ratios: */ /* RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS ) */ /* RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ r_dim1 = *lda; r_offset = 1 + r_dim1; r__ -= r_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ minmn = min(*m,*n); eps = slamch_("Epsilon"); /* Copy the matrix A to the array AF. */ clacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda); /* Factorize the matrix A in the array AF. */ s_copy(srnamc_1.srnamt, "CGEQRF", (ftnlen)6, (ftnlen)6); cgeqrf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy details of Q */ claset_("Full", m, m, &c_b1, &c_b1, &q[q_offset], lda); i__1 = *m - 1; clacpy_("Lower", &i__1, n, &af[af_dim1 + 2], lda, &q[q_dim1 + 2], lda); /* Generate the m-by-m matrix Q */ s_copy(srnamc_1.srnamt, "CUNGQR", (ftnlen)6, (ftnlen)6); cungqr_(m, m, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy R */ claset_("Full", m, n, &c_b10, &c_b10, &r__[r_offset], lda); clacpy_("Upper", m, n, &af[af_offset], lda, &r__[r_offset], lda); /* Compute R - Q'*A */ cgemm_("Conjugate transpose", "No transpose", m, n, m, &c_b15, &q[ q_offset], lda, &a[a_offset], lda, &c_b16, &r__[r_offset], lda); /* Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) . */ anorm = clange_("1", m, n, &a[a_offset], lda, &rwork[1]); resid = clange_("1", m, n, &r__[r_offset], lda, &rwork[1]); if (anorm > 0.f) { result[1] = resid / (real) max(1,*m) / anorm / eps; } else { result[1] = 0.f; } /* Compute I - Q'*Q */ claset_("Full", m, m, &c_b10, &c_b16, &r__[r_offset], lda); cherk_("Upper", "Conjugate transpose", m, m, &c_b24, &q[q_offset], lda, & c_b25, &r__[r_offset], lda); /* Compute norm( I - Q'*Q ) / ( M * EPS ) . */ resid = clansy_("1", "Upper", m, &r__[r_offset], lda, &rwork[1]); result[2] = resid / (real) max(1,*m) / eps; return 0; /* End of CQRT01 */ } /* cqrt01_ */ .