subroutine reduc2(nm,n,a,b,dl,ierr) c integer i,j,k,n,i1,j1,nm,nn,ierr double precision a(nm,n),b(nm,n),dl(n) double precision x,y c c this subroutine is a translation of the algol procedure reduc2, c num. math. 11, 99-110(1968) by martin and wilkinson. c handbook for auto. comp., vol.ii-linear algebra, 303-314(1971). c c this subroutine reduces the generalized symmetric eigenproblems c abx=(lambda)x or bay=(lambda)y, where b is positive definite, c to the standard symmetric eigenproblem using the cholesky c factorization of b. c c on input c c nm must be set to the row dimension of two-dimensional c array parameters as declared in the calling program c dimension statement. c c n is the order of the matrices a and b. if the cholesky c factor l of b is already available, n should be prefixed c with a minus sign. c c a and b contain the real symmetric input matrices. only the c full upper triangles of the matrices need be supplied. if c n is negative, the strict lower triangle of b contains, c instead, the strict lower triangle of its cholesky factor l. c c dl contains, if n is negative, the diagonal elements of l. c c on output c c a contains in its full lower triangle the full lower triangle c of the symmetric matrix derived from the reduction to the c standard form. the strict upper triangle of a is unaltered. c c b contains in its strict lower triangle the strict lower c triangle of its cholesky factor l. the full upper c triangle of b is unaltered. c c dl contains the diagonal elements of l. c c ierr is set to c zero for normal return, c 7*n+1 if b is not positive definite. c c questions and comments should be directed to burton s. garbow, c mathematics and computer science div, argonne national laboratory c c this version dated august 1983. c c ------------------------------------------------------------------ c ierr = 0 nn = iabs(n) if (n .lt. 0) go to 100 c .......... form l in the arrays b and dl .......... do 80 i = 1, n i1 = i - 1 c do 80 j = i, n x = b(i,j) if (i .eq. 1) go to 40 c do 20 k = 1, i1 20 x = x - b(i,k) * b(j,k) c 40 if (j .ne. i) go to 60 if (x .le. 0.0d0) go to 1000 y = dsqrt(x) dl(i) = y go to 80 60 b(j,i) = x / y 80 continue c .......... form the lower triangle of a*l c in the lower triangle of the array a .......... 100 do 200 i = 1, nn i1 = i + 1 c do 200 j = 1, i x = a(j,i) * dl(j) if (j .eq. i) go to 140 j1 = j + 1 c do 120 k = j1, i 120 x = x + a(k,i) * b(k,j) c 140 if (i .eq. nn) go to 180 c do 160 k = i1, nn 160 x = x + a(i,k) * b(k,j) c 180 a(i,j) = x 200 continue c .......... pre-multiply by transpose(l) and overwrite .......... do 300 i = 1, nn i1 = i + 1 y = dl(i) c do 300 j = 1, i x = y * a(i,j) if (i .eq. nn) go to 280 c do 260 k = i1, nn 260 x = x + a(k,j) * b(k,i) c 280 a(i,j) = x 300 continue c go to 1001 c .......... set error -- b is not positive definite .......... 1000 ierr = 7 * n + 1 1001 return end .