subroutine trbak3(nm,n,nv,a,m,z) c integer i,j,k,l,m,n,ik,iz,nm,nv double precision a(nv),z(nm,m) double precision h,s c c this subroutine is a translation of the algol procedure trbak3, c num. math. 11, 181-195(1968) by martin, reinsch, and wilkinson. c handbook for auto. comp., vol.ii-linear algebra, 212-226(1971). c c this subroutine forms the eigenvectors of a real symmetric c matrix by back transforming those of the corresponding c symmetric tridiagonal matrix determined by tred3. c c on input c c nm must be set to the row dimension of two-dimensional c array parameters as declared in the calling program c dimension statement. c c n is the order of the matrix. c c nv must be set to the dimension of the array parameter a c as declared in the calling program dimension statement. c c a contains information about the orthogonal transformations c used in the reduction by tred3 in its first c n*(n+1)/2 positions. c c m is the number of eigenvectors to be back transformed. c c z contains the eigenvectors to be back transformed c in its first m columns. c c on output c c z contains the transformed eigenvectors c in its first m columns. c c note that trbak3 preserves vector euclidean norms. c c questions and comments should be directed to burton s. garbow, c mathematics and computer science div, argonne national laboratory c c this version dated august 1983. c c ------------------------------------------------------------------ c if (m .eq. 0) go to 200 if (n .eq. 1) go to 200 c do 140 i = 2, n l = i - 1 iz = (i * l) / 2 ik = iz + i h = a(ik) if (h .eq. 0.0d0) go to 140 c do 130 j = 1, m s = 0.0d0 ik = iz c do 110 k = 1, l ik = ik + 1 s = s + a(ik) * z(k,j) 110 continue c .......... double division avoids possible underflow .......... s = (s / h) / h ik = iz c do 120 k = 1, l ik = ik + 1 z(k,j) = z(k,j) - s * a(ik) 120 continue c 130 continue c 140 continue c 200 return end .