subroutine dmchar(ibeta,it,irnd,ngrd,machep,negep,iexp,minexp, 1 maxexp,eps,epsneg,xmin,xmax) c integer i,ibeta,iexp,irnd,it,iz,j,k,machep,maxexp,minexp, 1 mx,negep,ngrd double precision a,b,beta,betain,betam1,eps,epsneg,one,xmax, 1 xmin,y,z,zero c c this subroutine is intended to determine the characteristics c of the floating-point arithmetic system that are specified c below. the first three are determined according to an c algorithm due to m. malcolm, cacm 15 (1972), pp. 949-951, c incorporating some, but not all, of the improvements c suggested by m. gentleman and s. marovich, cacm 17 (1974), c pp. 276-277. c c c ibeta - the radix of the floating-point representation c it - the number of base ibeta digits in the floating-point c significand c irnd - 0 if floating-point addition chops, c 1 if floating-point addition rounds c ngrd - the number of guard digits for multiplication. it is c 0 if irnd=1, or if irnd=0 and only it base ibeta c digits participate in the post normalization shift c of the floating-point significand in multiplication c 1 if irnd=0 and more than it base ibeta digits c participate in the post normalization shift of the c floating-point significand in multiplication c machep - the largest negative integer such that c 1.0+float(ibeta)**machep .ne. 1.0, except that c machep is bounded below by -(it+3) c negeps - the largest negative integer such that c 1.0-float(ibeta)**negeps .ne. 1.0, except that c negeps is bounded below by -(it+3) c iexp - the number of bits (decimal places if ibeta = 10) c reserved for the representation of the exponent c (including the bias or sign) of a floating-point c number c minexp - the largest in magnitude negative integer such that c float(ibeta)**minexp is a positive floating-point c number c maxexp - the largest positive integer exponent for a finite c floating-point number c eps - the smallest positive floating-point number such c that 1.0+eps .ne. 1.0. in particular, if either c ibeta = 2 or irnd = 0, eps = float(ibeta)**machep. c otherwise, eps = (float(ibeta)**machep)/2 c epsneg - a small positive floating-point number such that c 1.0-epsneg .ne. 1.0. in particular, if ibeta = 2 c or irnd = 0, epsneg = float(ibeta)**negeps. c otherwise, epsneg = (ibeta**negeps)/2. because c negeps is bounded below by -(it+3), epsneg may not c be the smallest number which can alter 1.0 by c subtraction. c xmin - the smallest non-vanishing floating-point power of the c radix. in particular, xmin = float(ibeta)**minexp c xmax - the largest finite floating-point number. in c particular xmax = (1.0-epsneg)*float(ibeta)**maxexp c note - on some machines xmax will be only the c second, or perhaps third, largest number, being c too small by 1 or 2 units in the last digit of c the significand. c c latest revision - october 22, 1979 c c author - w. j. cody c argonne national laboratory c c----------------------------------------------------------------- one = dble(float(1)) zero = 0.0d0 c----------------------------------------------------------------- c determine ibeta,beta ala malcolm c----------------------------------------------------------------- a = one 10 a = a + a if (((a+one)-a)-one .eq. zero) go to 10 b = one 20 b = b + b if ((a+b)-a .eq. zero) go to 20 ibeta = int(sngl((a + b) - a)) beta = dble(float(ibeta)) c----------------------------------------------------------------- c determine it, irnd c----------------------------------------------------------------- it = 0 b = one 100 it = it + 1 b = b * beta if (((b+one)-b)-one .eq. zero) go to 100 irnd = 0 betam1 = beta - one if ((a+betam1)-a .ne. zero) irnd = 1 c----------------------------------------------------------------- c determine negep, epsneg c----------------------------------------------------------------- negep = it + 3 betain = one / beta a = one c do 200 i = 1, negep a = a * betain 200 continue c b = a 210 if ((one-a)-one .ne. zero) go to 220 a = a * beta negep = negep - 1 go to 210 220 negep = -negep epsneg = a if ((ibeta .eq. 2) .or. (irnd .eq. 0)) go to 300 a = (a*(one+a)) / (one+one) if ((one-a)-one .ne. zero) epsneg = a c----------------------------------------------------------------- c determine machep, eps c----------------------------------------------------------------- 300 machep = -it - 3 a = b 310 if((one+a)-one .ne. zero) go to 320 a = a * beta machep = machep + 1 go to 310 320 eps = a if ((ibeta .eq. 2) .or. (irnd .eq. 0)) go to 350 a = (a*(one+a)) / (one+one) if ((one+a)-one .ne. zero) eps = a c----------------------------------------------------------------- c determine ngrd c----------------------------------------------------------------- 350 ngrd = 0 if ((irnd .eq. 0) .and. ((one+eps)*one-one) .ne. zero) ngrd = 1 c----------------------------------------------------------------- c determine iexp, minexp, xmin c c loop to determine largest i and k = 2**i such that c (1/beta) ** (2**(i)) c does not underflow c exit from loop is signaled by an underflow. c----------------------------------------------------------------- i = 0 k = 1 z = betain 400 y = z z = y * y c----------------------------------------------------------------- c check for underflow here c----------------------------------------------------------------- a = z * one if ((a+a .eq. zero) .or. (dabs(z) .ge. y)) go to 410 i = i + 1 k = k + k go to 400 410 if (ibeta .eq. 10) go to 420 iexp = i + 1 mx = k + k go to 450 c----------------------------------------------------------------- c for decimal machines only c----------------------------------------------------------------- 420 iexp = 2 iz = ibeta 430 if (k .lt. iz) go to 440 iz = iz * ibeta iexp = iexp + 1 go to 430 440 mx = iz + iz - 1 c----------------------------------------------------------------- c loop to determine minexp, xmin c exit from loop is signaled by an underflow. c----------------------------------------------------------------- 450 xmin = y y = y * betain c----------------------------------------------------------------- c check for underflow here c----------------------------------------------------------------- a = y * one if (((a+a) .eq. zero) .or. (dabs(y) .ge. xmin)) go to 460 k = k + 1 go to 450 460 minexp = -k c----------------------------------------------------------------- c determine maxexp, xmax c----------------------------------------------------------------- if ((mx .gt. k+k-3) .or. (ibeta .eq. 10)) go to 500 mx = mx + mx iexp = iexp + 1 500 maxexp = mx + minexp c----------------------------------------------------------------- c adjust for machines with implicit leading c bit in binary significand and machines with c radix point at extreme right of significand c----------------------------------------------------------------- i = maxexp + minexp if ((ibeta .eq. 2) .and. (i .eq. 0)) maxexp = maxexp - 1 if (i .gt. 20) maxexp = maxexp - 1 if (a .ne. y) maxexp = maxexp - 2 xmax = one - epsneg if (xmax*one .ne. xmax) xmax = one - beta * epsneg xmax = xmax / (beta * beta * beta * xmin) i = maxexp + minexp + 3 if (i .le. 0) go to 520 c do 510 j = 1, i if (ibeta .eq. 2) xmax = xmax + xmax if (ibeta .ne. 2) xmax = xmax * beta 510 continue c 520 return c ---------- last card of dmchar ---------- end .