URI: 
       t3D geometry - plan9port - [fork] Plan 9 from user space
  HTML git clone git://src.adamsgaard.dk/plan9port
   DIR Log
   DIR Files
   DIR Refs
   DIR README
   DIR LICENSE
       ---
   DIR commit d1e9002f81f14fbfef1ebc4261edccd9eb97b72c
   DIR parent 46f79934b79ef526ed42bbe5a565e6b5d884d24a
  HTML Author: rsc <devnull@localhost>
       Date:   Tue,  4 Jan 2005 21:23:01 +0000
       
       3D geometry
       
       Diffstat:
         A src/libgeometry/arith3.c            |     215 +++++++++++++++++++++++++++++++
         A src/libgeometry/matrix.c            |     106 ++++++++++++++++++++++++++++++
         A src/libgeometry/mkfile              |      17 +++++++++++++++++
         A src/libgeometry/qball.c             |      66 +++++++++++++++++++++++++++++++
         A src/libgeometry/quaternion.c        |     242 +++++++++++++++++++++++++++++++
         A src/libgeometry/transform.c         |      75 +++++++++++++++++++++++++++++++
         A src/libgeometry/tstack.c            |     169 +++++++++++++++++++++++++++++++
       
       7 files changed, 890 insertions(+), 0 deletions(-)
       ---
   DIR diff --git a/src/libgeometry/arith3.c b/src/libgeometry/arith3.c
       t@@ -0,0 +1,215 @@
       +#include <u.h>
       +#include <libc.h>
       +#include <draw.h>
       +#include <geometry.h>
       +/*
       + * Routines whose names end in 3 work on points in Affine 3-space.
       + * They ignore w in all arguments and produce w=1 in all results.
       + * Routines whose names end in 4 work on points in Projective 3-space.
       + */
       +Point3 add3(Point3 a, Point3 b){
       +        a.x+=b.x;
       +        a.y+=b.y;
       +        a.z+=b.z;
       +        a.w=1.;
       +        return a;
       +}
       +Point3 sub3(Point3 a, Point3 b){
       +        a.x-=b.x;
       +        a.y-=b.y;
       +        a.z-=b.z;
       +        a.w=1.;
       +        return a;
       +}
       +Point3 neg3(Point3 a){
       +        a.x=-a.x;
       +        a.y=-a.y;
       +        a.z=-a.z;
       +        a.w=1.;
       +        return a;
       +}
       +Point3 div3(Point3 a, double b){
       +        a.x/=b;
       +        a.y/=b;
       +        a.z/=b;
       +        a.w=1.;
       +        return a;
       +}
       +Point3 mul3(Point3 a, double b){
       +        a.x*=b;
       +        a.y*=b;
       +        a.z*=b;
       +        a.w=1.;
       +        return a;
       +}
       +int eqpt3(Point3 p, Point3 q){
       +        return p.x==q.x && p.y==q.y && p.z==q.z;
       +}
       +/*
       + * Are these points closer than eps, in a relative sense
       + */
       +int closept3(Point3 p, Point3 q, double eps){
       +        return 2.*dist3(p, q)<eps*(len3(p)+len3(q));
       +}
       +double dot3(Point3 p, Point3 q){
       +        return p.x*q.x+p.y*q.y+p.z*q.z;
       +}
       +Point3 cross3(Point3 p, Point3 q){
       +        Point3 r;
       +        r.x=p.y*q.z-p.z*q.y;
       +        r.y=p.z*q.x-p.x*q.z;
       +        r.z=p.x*q.y-p.y*q.x;
       +        r.w=1.;
       +        return r;
       +}
       +double len3(Point3 p){
       +        return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
       +}
       +double dist3(Point3 p, Point3 q){
       +        p.x-=q.x;
       +        p.y-=q.y;
       +        p.z-=q.z;
       +        return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
       +}
       +Point3 unit3(Point3 p){
       +        double len=sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
       +        p.x/=len;
       +        p.y/=len;
       +        p.z/=len;
       +        p.w=1.;
       +        return p;
       +}
       +Point3 midpt3(Point3 p, Point3 q){
       +        p.x=.5*(p.x+q.x);
       +        p.y=.5*(p.y+q.y);
       +        p.z=.5*(p.z+q.z);
       +        p.w=1.;
       +        return p;
       +}
       +Point3 lerp3(Point3 p, Point3 q, double alpha){
       +        p.x+=(q.x-p.x)*alpha;
       +        p.y+=(q.y-p.y)*alpha;
       +        p.z+=(q.z-p.z)*alpha;
       +        p.w=1.;
       +        return p;
       +}
       +/*
       + * Reflect point p in the line joining p0 and p1
       + */
       +Point3 reflect3(Point3 p, Point3 p0, Point3 p1){
       +        Point3 a, b;
       +        a=sub3(p, p0);
       +        b=sub3(p1, p0);
       +        return add3(a, mul3(b, 2*dot3(a, b)/dot3(b, b)));
       +}
       +/*
       + * Return the nearest point on segment [p0,p1] to point testp
       + */
       +Point3 nearseg3(Point3 p0, Point3 p1, Point3 testp){
       +        double num, den;
       +        Point3 q, r;
       +        q=sub3(p1, p0);
       +        r=sub3(testp, p0);
       +        num=dot3(q, r);;
       +        if(num<=0) return p0;
       +        den=dot3(q, q);
       +        if(num>=den) return p1;
       +        return add3(p0, mul3(q, num/den));
       +}
       +/*
       + * distance from point p to segment [p0,p1]
       + */
       +#define        SMALL        1e-8        /* what should this value be? */
       +double pldist3(Point3 p, Point3 p0, Point3 p1){
       +        Point3 d, e;
       +        double dd, de, dsq;
       +        d=sub3(p1, p0);
       +        e=sub3(p, p0);
       +        dd=dot3(d, d);
       +        de=dot3(d, e);
       +        if(dd<SMALL*SMALL) return len3(e);
       +        dsq=dot3(e, e)-de*de/dd;
       +        if(dsq<SMALL*SMALL) return 0;
       +        return sqrt(dsq);
       +}
       +/*
       + * vdiv3(a, b) is the magnitude of the projection of a onto b
       + * measured in units of the length of b.
       + * vrem3(a, b) is the component of a perpendicular to b.
       + */
       +double vdiv3(Point3 a, Point3 b){
       +        return (a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z);
       +}
       +Point3 vrem3(Point3 a, Point3 b){
       +        double quo=(a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z);
       +        a.x-=b.x*quo;
       +        a.y-=b.y*quo;
       +        a.z-=b.z*quo;
       +        a.w=1.;
       +        return a;
       +}
       +/*
       + * Compute face (plane) with given normal, containing a given point
       + */
       +Point3 pn2f3(Point3 p, Point3 n){
       +        n.w=-dot3(p, n);
       +        return n;
       +}
       +/*
       + * Compute face containing three points
       + */
       +Point3 ppp2f3(Point3 p0, Point3 p1, Point3 p2){
       +        Point3 p01, p02;
       +        p01=sub3(p1, p0);
       +        p02=sub3(p2, p0);
       +        return pn2f3(p0, cross3(p01, p02));
       +}
       +/*
       + * Compute point common to three faces.
       + * Cramer's rule, yuk.
       + */
       +Point3 fff2p3(Point3 f0, Point3 f1, Point3 f2){
       +        double det;
       +        Point3 p;
       +        det=dot3(f0, cross3(f1, f2));
       +        if(fabs(det)<SMALL){        /* parallel planes, bogus answer */
       +                p.x=0.;
       +                p.y=0.;
       +                p.z=0.;
       +                p.w=0.;
       +                return p;
       +        }
       +        p.x=(f0.w*(f2.y*f1.z-f1.y*f2.z)
       +                +f1.w*(f0.y*f2.z-f2.y*f0.z)+f2.w*(f1.y*f0.z-f0.y*f1.z))/det;
       +        p.y=(f0.w*(f2.z*f1.x-f1.z*f2.x)
       +                +f1.w*(f0.z*f2.x-f2.z*f0.x)+f2.w*(f1.z*f0.x-f0.z*f1.x))/det;
       +        p.z=(f0.w*(f2.x*f1.y-f1.x*f2.y)
       +                +f1.w*(f0.x*f2.y-f2.x*f0.y)+f2.w*(f1.x*f0.y-f0.x*f1.y))/det;
       +        p.w=1.;
       +        return p;
       +}
       +/*
       + * pdiv4 does perspective division to convert a projective point to affine coordinates.
       + */
       +Point3 pdiv4(Point3 a){
       +        if(a.w==0) return a;
       +        a.x/=a.w;
       +        a.y/=a.w;
       +        a.z/=a.w;
       +        a.w=1.;
       +        return a;
       +}
       +Point3 add4(Point3 a, Point3 b){
       +        a.x+=b.x;
       +        a.y+=b.y;
       +        a.z+=b.z;
       +        a.w+=b.w;
       +        return a;
       +}
       +Point3 sub4(Point3 a, Point3 b){
       +        a.x-=b.x;
       +        a.y-=b.y;
       +        a.z-=b.z;
       +        a.w-=b.w;
       +        return a;
       +}
   DIR diff --git a/src/libgeometry/matrix.c b/src/libgeometry/matrix.c
       t@@ -0,0 +1,106 @@
       +/*
       + * ident(m)                store identity matrix in m
       + * matmul(a, b)                matrix multiply a*=b
       + * matmulr(a, b)        matrix multiply a=b*a
       + * determinant(m)        returns det(m)
       + * adjoint(m, minv)        minv=adj(m)
       + * invertmat(m, minv)        invert matrix m, result in minv, returns det(m)
       + *                        if m is singular, minv=adj(m)
       + */
       +#include <u.h>
       +#include <libc.h>
       +#include <draw.h>
       +#include <geometry.h>
       +void ident(Matrix m){
       +        register double *s=&m[0][0];
       +        *s++=1;*s++=0;*s++=0;*s++=0;
       +        *s++=0;*s++=1;*s++=0;*s++=0;
       +        *s++=0;*s++=0;*s++=1;*s++=0;
       +        *s++=0;*s++=0;*s++=0;*s=1;
       +}
       +void matmul(Matrix a, Matrix b){
       +        int i, j, k;
       +        double sum;
       +        Matrix tmp;
       +        for(i=0;i!=4;i++) for(j=0;j!=4;j++){
       +                sum=0;
       +                for(k=0;k!=4;k++)
       +                        sum+=a[i][k]*b[k][j];
       +                tmp[i][j]=sum;
       +        }
       +        for(i=0;i!=4;i++) for(j=0;j!=4;j++)
       +                a[i][j]=tmp[i][j];
       +}
       +void matmulr(Matrix a, Matrix b){
       +        int i, j, k;
       +        double sum;
       +        Matrix tmp;
       +        for(i=0;i!=4;i++) for(j=0;j!=4;j++){
       +                sum=0;
       +                for(k=0;k!=4;k++)
       +                        sum+=b[i][k]*a[k][j];
       +                tmp[i][j]=sum;
       +        }
       +        for(i=0;i!=4;i++) for(j=0;j!=4;j++)
       +                a[i][j]=tmp[i][j];
       +}
       +/*
       + * Return det(m)
       + */
       +double determinant(Matrix m){
       +        return m[0][0]*(m[1][1]*(m[2][2]*m[3][3]-m[2][3]*m[3][2])+
       +                        m[1][2]*(m[2][3]*m[3][1]-m[2][1]*m[3][3])+
       +                        m[1][3]*(m[2][1]*m[3][2]-m[2][2]*m[3][1]))
       +              -m[0][1]*(m[1][0]*(m[2][2]*m[3][3]-m[2][3]*m[3][2])+
       +                        m[1][2]*(m[2][3]*m[3][0]-m[2][0]*m[3][3])+
       +                        m[1][3]*(m[2][0]*m[3][2]-m[2][2]*m[3][0]))
       +              +m[0][2]*(m[1][0]*(m[2][1]*m[3][3]-m[2][3]*m[3][1])+
       +                        m[1][1]*(m[2][3]*m[3][0]-m[2][0]*m[3][3])+
       +                        m[1][3]*(m[2][0]*m[3][1]-m[2][1]*m[3][0]))
       +              -m[0][3]*(m[1][0]*(m[2][1]*m[3][2]-m[2][2]*m[3][1])+
       +                        m[1][1]*(m[2][2]*m[3][0]-m[2][0]*m[3][2])+
       +                        m[1][2]*(m[2][0]*m[3][1]-m[2][1]*m[3][0]));
       +}
       +/*
       + * Store the adjoint (matrix of cofactors) of m in madj.
       + * Works fine even if m and madj are the same matrix.
       + */
       +void adjoint(Matrix m, Matrix madj){
       +        double m00=m[0][0], m01=m[0][1], m02=m[0][2], m03=m[0][3];
       +        double m10=m[1][0], m11=m[1][1], m12=m[1][2], m13=m[1][3];
       +        double m20=m[2][0], m21=m[2][1], m22=m[2][2], m23=m[2][3];
       +        double m30=m[3][0], m31=m[3][1], m32=m[3][2], m33=m[3][3];
       +        madj[0][0]=m11*(m22*m33-m23*m32)+m21*(m13*m32-m12*m33)+m31*(m12*m23-m13*m22);
       +        madj[0][1]=m01*(m23*m32-m22*m33)+m21*(m02*m33-m03*m32)+m31*(m03*m22-m02*m23);
       +        madj[0][2]=m01*(m12*m33-m13*m32)+m11*(m03*m32-m02*m33)+m31*(m02*m13-m03*m12);
       +        madj[0][3]=m01*(m13*m22-m12*m23)+m11*(m02*m23-m03*m22)+m21*(m03*m12-m02*m13);
       +        madj[1][0]=m10*(m23*m32-m22*m33)+m20*(m12*m33-m13*m32)+m30*(m13*m22-m12*m23);
       +        madj[1][1]=m00*(m22*m33-m23*m32)+m20*(m03*m32-m02*m33)+m30*(m02*m23-m03*m22);
       +        madj[1][2]=m00*(m13*m32-m12*m33)+m10*(m02*m33-m03*m32)+m30*(m03*m12-m02*m13);
       +        madj[1][3]=m00*(m12*m23-m13*m22)+m10*(m03*m22-m02*m23)+m20*(m02*m13-m03*m12);
       +        madj[2][0]=m10*(m21*m33-m23*m31)+m20*(m13*m31-m11*m33)+m30*(m11*m23-m13*m21);
       +        madj[2][1]=m00*(m23*m31-m21*m33)+m20*(m01*m33-m03*m31)+m30*(m03*m21-m01*m23);
       +        madj[2][2]=m00*(m11*m33-m13*m31)+m10*(m03*m31-m01*m33)+m30*(m01*m13-m03*m11);
       +        madj[2][3]=m00*(m13*m21-m11*m23)+m10*(m01*m23-m03*m21)+m20*(m03*m11-m01*m13);
       +        madj[3][0]=m10*(m22*m31-m21*m32)+m20*(m11*m32-m12*m31)+m30*(m12*m21-m11*m22);
       +        madj[3][1]=m00*(m21*m32-m22*m31)+m20*(m02*m31-m01*m32)+m30*(m01*m22-m02*m21);
       +        madj[3][2]=m00*(m12*m31-m11*m32)+m10*(m01*m32-m02*m31)+m30*(m02*m11-m01*m12);
       +        madj[3][3]=m00*(m11*m22-m12*m21)+m10*(m02*m21-m01*m22)+m20*(m01*m12-m02*m11);
       +}
       +/*
       + * Store the inverse of m in minv.
       + * If m is singular, minv is instead its adjoint.
       + * Returns det(m).
       + * Works fine even if m and minv are the same matrix.
       + */
       +double invertmat(Matrix m, Matrix minv){
       +        double d, dinv;
       +        int i, j;
       +        d=determinant(m);
       +        adjoint(m, minv);
       +        if(d!=0.){
       +                dinv=1./d;
       +                for(i=0;i!=4;i++) for(j=0;j!=4;j++) minv[i][j]*=dinv;
       +        }
       +        return d;
       +}
   DIR diff --git a/src/libgeometry/mkfile b/src/libgeometry/mkfile
       t@@ -0,0 +1,17 @@
       +<$PLAN9/src/mkhdr
       +
       +LIB=libgeometry.a
       +OFILES=\
       +        arith3.$O\
       +        matrix.$O\
       +        qball.$O\
       +        quaternion.$O\
       +        transform.$O\
       +        tstack.$O\
       +
       +HFILES=$PLAN9/include/geometry.h
       +
       +<$PLAN9/src/mksyslib
       +
       +listing:V:
       +        pr mkfile $HFILES $CFILES|lp -du
   DIR diff --git a/src/libgeometry/qball.c b/src/libgeometry/qball.c
       t@@ -0,0 +1,66 @@
       +/*
       + * Ken Shoemake's Quaternion rotation controller
       + */
       +#include <u.h>
       +#include <libc.h>
       +#include <draw.h>
       +#include <stdio.h>
       +#include <event.h>
       +#include <geometry.h>
       +#define        BORDER        4
       +static Point ctlcen;                /* center of qball */
       +static int ctlrad;                /* radius of qball */
       +static Quaternion *axis;        /* constraint plane orientation, 0 if none */
       +/*
       + * Convert a mouse point into a unit quaternion, flattening if
       + * constrained to a particular plane.
       + */
       +static Quaternion mouseq(Point p){
       +        double qx=(double)(p.x-ctlcen.x)/ctlrad;
       +        double qy=(double)(p.y-ctlcen.y)/ctlrad;
       +        double rsq=qx*qx+qy*qy;
       +        double l;
       +        Quaternion q;
       +        if(rsq>1){
       +                rsq=sqrt(rsq);
       +                q.r=0.;
       +                q.i=qx/rsq;
       +                q.j=qy/rsq;
       +                q.k=0.;
       +        }
       +        else{
       +                q.r=0.;
       +                q.i=qx;
       +                q.j=qy;
       +                q.k=sqrt(1.-rsq);
       +        }
       +        if(axis){
       +                l=q.i*axis->i+q.j*axis->j+q.k*axis->k;
       +                q.i-=l*axis->i;
       +                q.j-=l*axis->j;
       +                q.k-=l*axis->k;
       +                l=sqrt(q.i*q.i+q.j*q.j+q.k*q.k);
       +                if(l!=0.){
       +                        q.i/=l;
       +                        q.j/=l;
       +                        q.k/=l;
       +                }
       +        }
       +        return q;
       +}
       +void qball(Rectangle r, Mouse *m, Quaternion *result, void (*redraw)(void), Quaternion *ap){
       +        Quaternion q, down;
       +        Point rad;
       +        axis=ap;
       +        ctlcen=divpt(addpt(r.min, r.max), 2);
       +        rad=divpt(subpt(r.max, r.min), 2);
       +        ctlrad=(rad.x<rad.y?rad.x:rad.y)-BORDER;
       +        down=qinv(mouseq(m->xy));
       +        q=*result;
       +        for(;;){
       +                *m=emouse();
       +                if(!m->buttons) break;
       +                *result=qmul(q, qmul(down, mouseq(m->xy)));
       +                (*redraw)();
       +        }
       +}
   DIR diff --git a/src/libgeometry/quaternion.c b/src/libgeometry/quaternion.c
       t@@ -0,0 +1,242 @@
       +/*
       + * Quaternion arithmetic:
       + *        qadd(q, r)        returns q+r
       + *        qsub(q, r)        returns q-r
       + *        qneg(q)                returns -q
       + *        qmul(q, r)        returns q*r
       + *        qdiv(q, r)        returns q/r, can divide check.
       + *        qinv(q)                returns 1/q, can divide check.
       + *        double qlen(p)        returns modulus of p
       + *        qunit(q)        returns a unit quaternion parallel to q
       + * The following only work on unit quaternions and rotation matrices:
       + *        slerp(q, r, a)        returns q*(r*q^-1)^a
       + *        qmid(q, r)        slerp(q, r, .5) 
       + *        qsqrt(q)        qmid(q, (Quaternion){1,0,0,0})
       + *        qtom(m, q)        converts a unit quaternion q into a rotation matrix m
       + *        mtoq(m)                returns a quaternion equivalent to a rotation matrix m
       + */
       +#include <u.h>
       +#include <libc.h>
       +#include <draw.h>
       +#include <geometry.h>
       +void qtom(Matrix m, Quaternion q){
       +#ifndef new
       +        m[0][0]=1-2*(q.j*q.j+q.k*q.k);
       +        m[0][1]=2*(q.i*q.j+q.r*q.k);
       +        m[0][2]=2*(q.i*q.k-q.r*q.j);
       +        m[0][3]=0;
       +        m[1][0]=2*(q.i*q.j-q.r*q.k);
       +        m[1][1]=1-2*(q.i*q.i+q.k*q.k);
       +        m[1][2]=2*(q.j*q.k+q.r*q.i);
       +        m[1][3]=0;
       +        m[2][0]=2*(q.i*q.k+q.r*q.j);
       +        m[2][1]=2*(q.j*q.k-q.r*q.i);
       +        m[2][2]=1-2*(q.i*q.i+q.j*q.j);
       +        m[2][3]=0;
       +        m[3][0]=0;
       +        m[3][1]=0;
       +        m[3][2]=0;
       +        m[3][3]=1;
       +#else
       +        /*
       +         * Transcribed from Ken Shoemake's new code -- not known to work
       +         */
       +        double Nq = q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k;
       +        double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0;
       +        double xs = q.i*s,                ys = q.j*s,                zs = q.k*s;
       +        double wx = q.r*xs,                wy = q.r*ys,                wz = q.r*zs;
       +        double xx = q.i*xs,                xy = q.i*ys,                xz = q.i*zs;
       +        double yy = q.j*ys,                yz = q.j*zs,                zz = q.k*zs;
       +        m[0][0] = 1.0 - (yy + zz); m[1][0] = xy + wz;         m[2][0] = xz - wy;
       +        m[0][1] = xy - wz;         m[1][1] = 1.0 - (xx + zz); m[2][1] = yz + wx;
       +        m[0][2] = xz + wy;         m[1][2] = yz - wx;         m[2][2] = 1.0 - (xx + yy);
       +        m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0;
       +        m[3][3] = 1.0;
       +#endif
       +}
       +Quaternion mtoq(Matrix mat){
       +#ifndef new
       +#define        EPS        1.387778780781445675529539585113525e-17        /* 2^-56 */
       +        double t;
       +        Quaternion q;
       +        q.r=0.;
       +        q.i=0.;
       +        q.j=0.;
       +        q.k=1.;
       +        if((t=.25*(1+mat[0][0]+mat[1][1]+mat[2][2]))>EPS){
       +                q.r=sqrt(t);
       +                t=4*q.r;
       +                q.i=(mat[1][2]-mat[2][1])/t;
       +                q.j=(mat[2][0]-mat[0][2])/t;
       +                q.k=(mat[0][1]-mat[1][0])/t;
       +        }
       +        else if((t=-.5*(mat[1][1]+mat[2][2]))>EPS){
       +                q.i=sqrt(t);
       +                t=2*q.i;
       +                q.j=mat[0][1]/t;
       +                q.k=mat[0][2]/t;
       +        }
       +        else if((t=.5*(1-mat[2][2]))>EPS){
       +                q.j=sqrt(t);
       +                q.k=mat[1][2]/(2*q.j);
       +        }
       +        return q;
       +#else
       +        /*
       +         * Transcribed from Ken Shoemake's new code -- not known to work
       +         */
       +        /* This algorithm avoids near-zero divides by looking for a large
       +         * component -- first r, then i, j, or k.  When the trace is greater than zero,
       +         * |r| is greater than 1/2, which is as small as a largest component can be.
       +         * Otherwise, the largest diagonal entry corresponds to the largest of |i|,
       +         * |j|, or |k|, one of which must be larger than |r|, and at least 1/2.
       +         */
       +        Quaternion qu;
       +        double tr, s;
       +        
       +        tr = mat[0][0] + mat[1][1] + mat[2][2];
       +        if (tr >= 0.0) {
       +                s = sqrt(tr + mat[3][3]);
       +                qu.r = s*0.5;
       +                s = 0.5 / s;
       +                qu.i = (mat[2][1] - mat[1][2]) * s;
       +                qu.j = (mat[0][2] - mat[2][0]) * s;
       +                qu.k = (mat[1][0] - mat[0][1]) * s;
       +        }
       +        else {
       +                int i = 0;
       +                if (mat[1][1] > mat[0][0]) i = 1;
       +                if (mat[2][2] > mat[i][i]) i = 2;
       +                switch(i){
       +                case 0:
       +                        s = sqrt( (mat[0][0] - (mat[1][1]+mat[2][2])) + mat[3][3] );
       +                        qu.i = s*0.5;
       +                        s = 0.5 / s;
       +                        qu.j = (mat[0][1] + mat[1][0]) * s;
       +                        qu.k = (mat[2][0] + mat[0][2]) * s;
       +                        qu.r = (mat[2][1] - mat[1][2]) * s;
       +                        break;
       +                case 1:
       +                        s = sqrt( (mat[1][1] - (mat[2][2]+mat[0][0])) + mat[3][3] );
       +                        qu.j = s*0.5;
       +                        s = 0.5 / s;
       +                        qu.k = (mat[1][2] + mat[2][1]) * s;
       +                        qu.i = (mat[0][1] + mat[1][0]) * s;
       +                        qu.r = (mat[0][2] - mat[2][0]) * s;
       +                        break;
       +                case 2:
       +                        s = sqrt( (mat[2][2] - (mat[0][0]+mat[1][1])) + mat[3][3] );
       +                        qu.k = s*0.5;
       +                        s = 0.5 / s;
       +                        qu.i = (mat[2][0] + mat[0][2]) * s;
       +                        qu.j = (mat[1][2] + mat[2][1]) * s;
       +                        qu.r = (mat[1][0] - mat[0][1]) * s;
       +                        break;
       +                }
       +        }
       +        if (mat[3][3] != 1.0){
       +                s=1/sqrt(mat[3][3]);
       +                qu.r*=s;
       +                qu.i*=s;
       +                qu.j*=s;
       +                qu.k*=s;
       +        }
       +        return (qu);
       +#endif
       +}
       +Quaternion qadd(Quaternion q, Quaternion r){
       +        q.r+=r.r;
       +        q.i+=r.i;
       +        q.j+=r.j;
       +        q.k+=r.k;
       +        return q;
       +}
       +Quaternion qsub(Quaternion q, Quaternion r){
       +        q.r-=r.r;
       +        q.i-=r.i;
       +        q.j-=r.j;
       +        q.k-=r.k;
       +        return q;
       +}
       +Quaternion qneg(Quaternion q){
       +        q.r=-q.r;
       +        q.i=-q.i;
       +        q.j=-q.j;
       +        q.k=-q.k;
       +        return q;
       +}
       +Quaternion qmul(Quaternion q, Quaternion r){
       +        Quaternion s;
       +        s.r=q.r*r.r-q.i*r.i-q.j*r.j-q.k*r.k;
       +        s.i=q.r*r.i+r.r*q.i+q.j*r.k-q.k*r.j;
       +        s.j=q.r*r.j+r.r*q.j+q.k*r.i-q.i*r.k;
       +        s.k=q.r*r.k+r.r*q.k+q.i*r.j-q.j*r.i;
       +        return s;
       +}
       +Quaternion qdiv(Quaternion q, Quaternion r){
       +        return qmul(q, qinv(r));
       +}
       +Quaternion qunit(Quaternion q){
       +        double l=qlen(q);
       +        q.r/=l;
       +        q.i/=l;
       +        q.j/=l;
       +        q.k/=l;
       +        return q;
       +}
       +/*
       + * Bug?: takes no action on divide check
       + */
       +Quaternion qinv(Quaternion q){
       +        double l=q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k;
       +        q.r/=l;
       +        q.i=-q.i/l;
       +        q.j=-q.j/l;
       +        q.k=-q.k/l;
       +        return q;
       +}
       +double qlen(Quaternion p){
       +        return sqrt(p.r*p.r+p.i*p.i+p.j*p.j+p.k*p.k);
       +}
       +Quaternion slerp(Quaternion q, Quaternion r, double a){
       +        double u, v, ang, s;
       +        double dot=q.r*r.r+q.i*r.i+q.j*r.j+q.k*r.k;
       +        ang=dot<-1?PI:dot>1?0:acos(dot); /* acos gives NaN for dot slightly out of range */
       +        s=sin(ang);
       +        if(s==0) return ang<PI/2?q:r;
       +        u=sin((1-a)*ang)/s;
       +        v=sin(a*ang)/s;
       +        q.r=u*q.r+v*r.r;
       +        q.i=u*q.i+v*r.i;
       +        q.j=u*q.j+v*r.j;
       +        q.k=u*q.k+v*r.k;
       +        return q;
       +}
       +/*
       + * Only works if qlen(q)==qlen(r)==1
       + */
       +Quaternion qmid(Quaternion q, Quaternion r){
       +        double l;
       +        q=qadd(q, r);
       +        l=qlen(q);
       +        if(l<1e-12){
       +                q.r=r.i;
       +                q.i=-r.r;
       +                q.j=r.k;
       +                q.k=-r.j;
       +        }
       +        else{
       +                q.r/=l;
       +                q.i/=l;
       +                q.j/=l;
       +                q.k/=l;
       +        }
       +        return q;
       +}
       +/*
       + * Only works if qlen(q)==1
       + */
       +static Quaternion qident={1,0,0,0};
       +Quaternion qsqrt(Quaternion q){
       +        return qmid(q, qident);
       +}
   DIR diff --git a/src/libgeometry/transform.c b/src/libgeometry/transform.c
       t@@ -0,0 +1,75 @@
       +/*
       + * The following routines transform points and planes from one space
       + * to another.  Points and planes are represented by their
       + * homogeneous coordinates, stored in variables of type Point3.
       + */
       +#include <u.h>
       +#include <libc.h>
       +#include <draw.h>
       +#include <geometry.h>
       +/*
       + * Transform point p.
       + */
       +Point3 xformpoint(Point3 p, Space *to, Space *from){
       +        Point3 q, r;
       +        register double *m;
       +        if(from){
       +                m=&from->t[0][0];
       +                q.x=*m++*p.x; q.x+=*m++*p.y; q.x+=*m++*p.z; q.x+=*m++*p.w;
       +                q.y=*m++*p.x; q.y+=*m++*p.y; q.y+=*m++*p.z; q.y+=*m++*p.w;
       +                q.z=*m++*p.x; q.z+=*m++*p.y; q.z+=*m++*p.z; q.z+=*m++*p.w;
       +                q.w=*m++*p.x; q.w+=*m++*p.y; q.w+=*m++*p.z; q.w+=*m  *p.w;
       +        }
       +        else
       +                q=p;
       +        if(to){
       +                m=&to->tinv[0][0];
       +                r.x=*m++*q.x; r.x+=*m++*q.y; r.x+=*m++*q.z; r.x+=*m++*q.w;
       +                r.y=*m++*q.x; r.y+=*m++*q.y; r.y+=*m++*q.z; r.y+=*m++*q.w;
       +                r.z=*m++*q.x; r.z+=*m++*q.y; r.z+=*m++*q.z; r.z+=*m++*q.w;
       +                r.w=*m++*q.x; r.w+=*m++*q.y; r.w+=*m++*q.z; r.w+=*m  *q.w;
       +        }
       +        else
       +                r=q;
       +        return r;
       +}
       +/*
       + * Transform point p with perspective division.
       + */
       +Point3 xformpointd(Point3 p, Space *to, Space *from){
       +        p=xformpoint(p, to, from);
       +        if(p.w!=0){
       +                p.x/=p.w;
       +                p.y/=p.w;
       +                p.z/=p.w;
       +                p.w=1;
       +        }
       +        return p;
       +}
       +/*
       + * Transform plane p -- same as xformpoint, except multiply on the
       + * other side by the inverse matrix.
       + */
       +Point3 xformplane(Point3 p, Space *to, Space *from){
       +        Point3 q, r;
       +        register double *m;
       +        if(from){
       +                m=&from->tinv[0][0];
       +                q.x =*m++*p.x; q.y =*m++*p.x; q.z =*m++*p.x; q.w =*m++*p.x;
       +                q.x+=*m++*p.y; q.y+=*m++*p.y; q.z+=*m++*p.y; q.w+=*m++*p.y;
       +                q.x+=*m++*p.z; q.y+=*m++*p.z; q.z+=*m++*p.z; q.w+=*m++*p.z;
       +                q.x+=*m++*p.w; q.y+=*m++*p.w; q.z+=*m++*p.w; q.w+=*m  *p.w;
       +        }
       +        else
       +                q=p;
       +        if(to){
       +                m=&to->t[0][0];
       +                r.x =*m++*q.x; r.y =*m++*q.x; r.z =*m++*q.x; r.w =*m++*q.x;
       +                r.x+=*m++*q.y; r.y+=*m++*q.y; r.z+=*m++*q.y; r.w+=*m++*q.y;
       +                r.x+=*m++*q.z; r.y+=*m++*q.z; r.z+=*m++*q.z; r.w+=*m++*q.z;
       +                r.x+=*m++*q.w; r.y+=*m++*q.w; r.z+=*m++*q.w; r.w+=*m  *q.w;
       +        }
       +        else
       +                r=q;
       +        return r;
       +}
   DIR diff --git a/src/libgeometry/tstack.c b/src/libgeometry/tstack.c
       t@@ -0,0 +1,169 @@
       +/*% cc -gpc %
       + * These transformation routines maintain stacks of transformations
       + * and their inverses.  
       + * t=pushmat(t)                push matrix stack
       + * t=popmat(t)                pop matrix stack
       + * rot(t, a, axis)        multiply stack top by rotation
       + * qrot(t, q)                multiply stack top by rotation, q is unit quaternion
       + * scale(t, x, y, z)        multiply stack top by scale
       + * move(t, x, y, z)        multiply stack top by translation
       + * xform(t, m)                multiply stack top by m
       + * ixform(t, m, inv)        multiply stack top by m.  inv is the inverse of m.
       + * look(t, e, l, u)        multiply stack top by viewing transformation
       + * persp(t, fov, n, f)        multiply stack top by perspective transformation
       + * viewport(t, r, aspect)
       + *                        multiply stack top by window->viewport transformation.
       + */
       +#include <u.h>
       +#include <libc.h>
       +#include <draw.h>
       +#include <geometry.h>
       +Space *pushmat(Space *t){
       +        Space *v;
       +        v=malloc(sizeof(Space));
       +        if(t==0){
       +                ident(v->t);
       +                ident(v->tinv);
       +        }
       +        else
       +                *v=*t;
       +        v->next=t;
       +        return v;
       +}
       +Space *popmat(Space *t){
       +        Space *v;
       +        if(t==0) return 0;
       +        v=t->next;
       +        free(t);
       +        return v;
       +}
       +void rot(Space *t, double theta, int axis){
       +        double s=sin(radians(theta)), c=cos(radians(theta));
       +        Matrix m, inv;
       +        int i=(axis+1)%3, j=(axis+2)%3;
       +        ident(m);
       +        m[i][i] = c;
       +        m[i][j] = -s;
       +        m[j][i] = s;
       +        m[j][j] = c;
       +        ident(inv);
       +        inv[i][i] = c;
       +        inv[i][j] = s;
       +        inv[j][i] = -s;
       +        inv[j][j] = c;
       +        ixform(t, m, inv);
       +}
       +void qrot(Space *t, Quaternion q){
       +        Matrix m, inv;
       +        int i, j;
       +        qtom(m, q);
       +        for(i=0;i!=4;i++) for(j=0;j!=4;j++) inv[i][j]=m[j][i];
       +        ixform(t, m, inv);
       +}
       +void scale(Space *t, double x, double y, double z){
       +        Matrix m, inv;
       +        ident(m);
       +        m[0][0]=x;
       +        m[1][1]=y;
       +        m[2][2]=z;
       +        ident(inv);
       +        inv[0][0]=1/x;
       +        inv[1][1]=1/y;
       +        inv[2][2]=1/z;
       +        ixform(t, m, inv);
       +}
       +void move(Space *t, double x, double y, double z){
       +        Matrix m, inv;
       +        ident(m);
       +        m[0][3]=x;
       +        m[1][3]=y;
       +        m[2][3]=z;
       +        ident(inv);
       +        inv[0][3]=-x;
       +        inv[1][3]=-y;
       +        inv[2][3]=-z;
       +        ixform(t, m, inv);
       +}
       +void xform(Space *t, Matrix m){
       +        Matrix inv;
       +        if(invertmat(m, inv)==0) return;
       +        ixform(t, m, inv);
       +}
       +void ixform(Space *t, Matrix m, Matrix inv){
       +        matmul(t->t, m);
       +        matmulr(t->tinv, inv);
       +}
       +/*
       + * multiply the top of the matrix stack by a view-pointing transformation
       + * with the eyepoint at e, looking at point l, with u at the top of the screen.
       + * The coordinate system is deemed to be right-handed.
       + * The generated transformation transforms this view into a view from
       + * the origin, looking in the positive y direction, with the z axis pointing up,
       + * and x to the right.
       + */
       +void look(Space *t, Point3 e, Point3 l, Point3 u){
       +        Matrix m, inv;
       +        Point3 r;
       +        l=unit3(sub3(l, e));
       +        u=unit3(vrem3(sub3(u, e), l));
       +        r=cross3(l, u);
       +        /* make the matrix to transform from (rlu) space to (xyz) space */
       +        ident(m);
       +        m[0][0]=r.x; m[0][1]=r.y; m[0][2]=r.z;
       +        m[1][0]=l.x; m[1][1]=l.y; m[1][2]=l.z;
       +        m[2][0]=u.x; m[2][1]=u.y; m[2][2]=u.z;
       +        ident(inv);
       +        inv[0][0]=r.x; inv[0][1]=l.x; inv[0][2]=u.x;
       +        inv[1][0]=r.y; inv[1][1]=l.y; inv[1][2]=u.y;
       +        inv[2][0]=r.z; inv[2][1]=l.z; inv[2][2]=u.z;
       +        ixform(t, m, inv);
       +        move(t, -e.x, -e.y, -e.z);
       +}
       +/*
       + * generate a transformation that maps the frustum with apex at the origin,
       + * apex angle=fov and clipping planes y=n and y=f into the double-unit cube.
       + * plane y=n maps to y'=-1, y=f maps to y'=1
       + */
       +int persp(Space *t, double fov, double n, double f){
       +        Matrix m;
       +        double z;
       +        if(n<=0 || f<=n || fov<=0 || 180<=fov) /* really need f!=n && sin(v)!=0 */
       +                return -1;
       +        z=1/tan(radians(fov)/2);
       +        m[0][0]=z; m[0][1]=0;           m[0][2]=0; m[0][3]=0;
       +        m[1][0]=0; m[1][1]=(f+n)/(f-n); m[1][2]=0; m[1][3]=f*(1-m[1][1]);
       +        m[2][0]=0; m[2][1]=0;           m[2][2]=z; m[2][3]=0;
       +        m[3][0]=0; m[3][1]=1;           m[3][2]=0; m[3][3]=0;
       +        xform(t, m);
       +        return 0;
       +}
       +/*
       + * Map the unit-cube window into the given screen viewport.
       + * r has min at the top left, max just outside the lower right.  Aspect is the
       + * aspect ratio (dx/dy) of the viewport's pixels (not of the whole viewport!)
       + * The whole window is transformed to fit centered inside the viewport with equal
       + * slop on either top and bottom or left and right, depending on the viewport's
       + * aspect ratio.
       + * The window is viewed down the y axis, with x to the left and z up.  The viewport
       + * has x increasing to the right and y increasing down.  The window's y coordinates
       + * are mapped, unchanged, into the viewport's z coordinates.
       + */
       +void viewport(Space *t, Rectangle r, double aspect){
       +        Matrix m;
       +        double xc, yc, wid, hgt, scale;
       +        xc=.5*(r.min.x+r.max.x);
       +        yc=.5*(r.min.y+r.max.y);
       +        wid=(r.max.x-r.min.x)*aspect;
       +        hgt=r.max.y-r.min.y;
       +        scale=.5*(wid<hgt?wid:hgt);
       +        ident(m);
       +        m[0][0]=scale;
       +        m[0][3]=xc;
       +        m[1][1]=0;
       +        m[1][2]=-scale;
       +        m[1][3]=yc;
       +        m[2][1]=1;
       +        m[2][2]=0;
       +        /* should get inverse by hand */
       +        xform(t, m);
       +}