URI: 
       tmap.1 - plan9port - [fork] Plan 9 from user space
  HTML git clone git://src.adamsgaard.dk/plan9port
   DIR Log
   DIR Files
   DIR Refs
   DIR README
   DIR LICENSE
       ---
       tmap.1 (13546B)
       ---
            1 .TH MAP 1
            2 .SH NAME
            3 map, mapdemo, mapd \- draw maps on various projections
            4 .SH SYNOPSIS
            5 .B map
            6 .I projection
            7 [
            8 .I option ...
            9 ]
           10 .PP
           11 .B mapdemo
           12 .PP
           13 .SH DESCRIPTION
           14 .I Map
           15 prepares on the standard output a
           16 map suitable for display by any
           17 plotting filter described in
           18 .IR  plot (1).
           19 A menu of projections is produced in response to an unknown
           20 .IR projection .
           21 .I Mapdemo
           22 is a short course in mapping.
           23 .PP
           24 The default data for
           25 .I map
           26 are world shorelines.
           27 Option
           28 .B -f
           29 accesses more detailed data
           30 classified by feature.
           31 .TP
           32 .BR -f " [ \fIfeature\fR ... ]"
           33 Features are ranked 1 (default) to 4 from major to minor.
           34 Higher-numbered ranks include all lower-numbered ones.
           35 Features are
           36 .RS
           37 .TF country[1-3]
           38 .TP
           39 .BR shore [ 1 - 4 ] 
           40 seacoasts, lakes, and islands; option
           41 .B -f
           42 always shows
           43 .B shore1
           44 .TP
           45 .BR ilake [ 1 - 2 ] 
           46 intermittent lakes
           47 .TP
           48 .BR river [ 1 - 4 ] 
           49 rivers
           50 .TP
           51 .BR iriver [ 1 - 3 ] 
           52 intermittent rivers
           53 .TP
           54 .BR canal [ 1 - 3 ] 
           55 .BR 3 =irrigation
           56 canals
           57 .TP
           58 .BR glacier
           59 .TP
           60 .BR iceshelf [ 12 ] 
           61 .TP
           62 .BR reef
           63 .TP
           64 .BR saltpan [ 12 ] 
           65 .TP
           66 .BR country [ 1 - 3 ] 
           67 .BR 2 =disputed
           68 boundaries,
           69 .BR 3 =indefinite
           70 boundaries
           71 .TP
           72 .BR state
           73 states and provinces (US and Canada only)
           74 .PD
           75 .RE
           76 .PP
           77 In other options
           78 coordinates are in degrees, with north latitude
           79 and west longitude counted as positive.
           80 .TP 0
           81 .BI -l " S N E W"
           82 Set the southern and northern latitude
           83 and the eastern and western longitude limits.
           84 Missing arguments are filled out from the list
           85 \-90, 90, \-180, 180,
           86 or lesser limits suitable to the
           87 projection at hand.
           88 .TP
           89 .BI -k " S N E W
           90 Set the scale as if for a map with limits
           91 .B -l
           92 .I "S N E W"\f1.
           93 Do not consider any
           94 .B -l
           95 or
           96 .B -w
           97 option in setting scale.
           98 .TP
           99 .BI -o " lat lon rot"
          100 Orient the map in a nonstandard position.
          101 Imagine a transparent gridded sphere around the globe.
          102 Turn the overlay about the North Pole
          103 so that the Prime Meridian (longitude 0)
          104 of the overlay coincides with meridian
          105 .I lon
          106 on the globe.
          107 Then tilt the North Pole of the
          108 overlay along its Prime Meridian to latitude
          109 .I lat
          110 on the globe.
          111 Finally again turn the
          112 overlay about its `North Pole' so
          113 that its Prime Meridian coincides with the previous position
          114 of meridian
          115 .IR rot .
          116 Project the map in
          117 the standard form appropriate to the overlay, but presenting
          118 information from the underlying globe.
          119 Missing arguments are filled out from the list
          120 90, 0, 0.
          121 In the absence of
          122 .BR - o ,
          123 the orientation is 90, 0,
          124 .IR m ,
          125 where
          126 .I m
          127 is the middle of the longitude range.
          128 .TP
          129 .BI -w " S N E W"
          130 Window the map by the specified latitudes
          131 and longitudes in the tilted, rotated coordinate system.
          132 Missing arguments are filled out from the list \-90, 90, \-180, 180.
          133 (It is wise to give an encompassing
          134 .B -l
          135 option with
          136 .BR -w .
          137 Otherwise for small windows computing time
          138 varies inversely with area!)
          139 .TP
          140 .BI -d " n"
          141 For speed, plot only every
          142 .IR n th
          143 point.
          144 .TP
          145 .B  -r
          146 Reverse left and right
          147 (good for star charts and inside-out views).
          148 .ns
          149 .TP
          150 .B -v
          151 Verso.
          152 Switch to a normally suppressed sheet of the map, such as the
          153 back side of the earth in orthographic projection.
          154 .TP
          155 .B  -s1
          156 .br
          157 .ns
          158 .TP
          159 .B -s2
          160 Superpose; outputs for a
          161 .B -s1
          162 map (no closing) and a
          163 .B -s2
          164 map (no opening) may be concatenated.
          165 .TP
          166 .BI -g " dlat dlon res"
          167 Grid spacings are
          168 .IR dlat ,
          169 .IR dlon .
          170 Zero spacing means no grid.
          171 Missing
          172 .I dlat
          173 is taken to be zero.
          174 Missing
          175 .I dlon
          176 is taken the same as
          177 .IR dlat .
          178 Grid lines are drawn to a resolution of
          179 .I res
          180 (2° or less by default).
          181 In the absence of
          182 .BR - g ,
          183 grid spacing is 10°.
          184 .TP
          185 .BI -p " lat lon extent"
          186 Position the point
          187 .I lat, lon
          188 at the center of the plotting area.
          189 Scale the map so that the height (and width) of the
          190 nominal plotting area is
          191 .I extent
          192 times the size of one degree of latitude
          193 at the center.
          194 By default maps are scaled and positioned
          195 to fit within the plotting area.
          196 An
          197 .I extent
          198 overrides option
          199 .BR -k .
          200 .TP
          201 .BI -c " x y rot"
          202 After all other positioning and scaling operations
          203 have been performed, rotate the image
          204 .I rot
          205 degrees counterclockwise about the center 
          206 and move the center to position
          207 .IR x ,
          208 .IR y ,
          209 where the nominal plotting area is
          210 .RI \-1≤ x ≤1,
          211 .RI \-1≤ y ≤1.
          212 Missing arguments are taken to be 0.
          213 .BR -x
          214 Allow the map to extend outside the nominal plotting area.
          215 .TP
          216 .BR -m " [ \fIfile\fP ... ]"
          217 Use
          218 map data from named files.
          219 If no files are named, omit map data.
          220 Names that do not exist as pathnames are looked up in
          221 a standard directory, which contains, in addition to the
          222 data for
          223 .BR -f ,
          224 .RS
          225 .LP
          226 .TF counties
          227 .TP
          228 .B world
          229 World Data Bank I (default)
          230 .TP
          231 .B states
          232 US map from Census Bureau
          233 .TP
          234 .B counties
          235 US map from Census Bureau
          236 .PD
          237 .RE
          238 .IP
          239 The environment variables
          240 .B MAP 
          241 and
          242 .B MAPDIR 
          243 change the default
          244 map and default directory.
          245 .TP
          246 .BI -b " \fR[\fPlat0 lon0 lat1 lon1\fR... ]"
          247 Suppress the drawing of the normal boundary
          248 (defined by options
          249 .BR -l 
          250 and
          251 .BR -w ).
          252 Coordinates, if present, define the vertices of a
          253 polygon to which the map is clipped.
          254 If only two vertices are given, they are taken to be the
          255 diagonal of a rectangle.
          256 To draw the polygon, give its vertices as a
          257 .B -u
          258 track.
          259 .TP
          260 .BI -t " file ..."
          261 The
          262 .I files
          263 contain lists of points,
          264 given as latitude-longitude pairs in degrees.
          265 If the first file is named 
          266 .LR - ,
          267 the standard input is taken instead.
          268 The points of each list are plotted as connected `tracks'.
          269 .IP
          270 Points in a track file may be followed by label strings.
          271 A label breaks the track.
          272 A label may be prefixed by
          273 \fL"\fR,
          274 .LR : ,
          275 or 
          276 .L !
          277 and is terminated by a newline.
          278 An unprefixed string or a string prefixed with
          279 .L
          280 "
          281 is displayed at the designated point.
          282 The first word of a
          283 .L :
          284 or
          285 .L !
          286 string names a special symbol (see option
          287 .BR -y ).
          288 An optional numerical second word is a scale factor
          289 for the size of the symbol, 1 by default.
          290 A
          291 .L :
          292 symbol is aligned with its top to the north; a
          293 .L !
          294 symbol is aligned vertically on the page.
          295 .TP
          296 .BI -u " file ..."
          297 Same as
          298 .BR -t ,
          299 except the tracks are
          300 unbroken lines.
          301 .RB ( -t
          302 tracks appear as dot-dashed lines if the plotting filter supports them.)
          303 .TP
          304 .BI -y " file
          305 The
          306 .I file
          307 contains 
          308 .MR plot (7) -style
          309 data for
          310 .L :
          311 or
          312 .L !
          313 labels in
          314 .B -t
          315 or
          316 .B -u
          317 files.
          318 Each symbol is defined by a comment
          319 .BI : name
          320 then a sequence of
          321 .L m
          322 and
          323 .L v
          324 commands.
          325 Coordinates (0,0) fall on the plotting point.
          326 Default scaling is as if the nominal plotting range were
          327 .LR "ra -1 -1 1 1" ;
          328 .L ra
          329 commands in
          330 .I file
          331 change the scaling.
          332 .SS Projections
          333 Equatorial projections centered on the Prime Meridian
          334 (longitude 0).
          335 Parallels are straight horizontal lines.
          336 .PP
          337 .PD 0
          338 .TP 1.5i
          339 .B mercator
          340 equally spaced straight meridians, conformal,
          341 straight compass courses
          342 .TP
          343 .B sinusoidal
          344 equally spaced parallels,
          345 equal-area, same as
          346 .LR "bonne 0" .
          347 .TP
          348 .BI cylequalarea " lat0"
          349 equally spaced straight meridians, equal-area,
          350 true scale on
          351 .I lat0
          352 .TP
          353 .B cylindrical
          354 central projection on tangent cylinder
          355 .TP
          356 .BI rectangular " lat0"
          357 equally spaced parallels, equally spaced straight meridians, true scale on
          358 .I lat0
          359 .TP
          360 .BI gall " lat0"
          361 parallels spaced stereographically on prime meridian, equally spaced straight
          362 meridians, true scale on
          363 .I lat0
          364 .TP
          365 .B mollweide
          366 (homalographic) equal-area, hemisphere is a circle
          367 .br
          368 .B gilbert()
          369 sphere conformally mapped on hemisphere and viewed orthographically
          370 .TP
          371 .B gilbert
          372 globe mapped conformally on hemisphere, viewed orthographically
          373 .PD
          374 .PP
          375 Azimuthal projections centered on the North Pole.
          376 Parallels are concentric circles.
          377 Meridians are equally spaced radial lines.
          378 .PP
          379 .PD 0
          380 .TP 1.5i
          381 .B azequidistant
          382 equally spaced parallels,
          383 true distances from pole
          384 .TP
          385 .B azequalarea
          386 equal-area
          387 .TP
          388 .B gnomonic
          389 central projection on tangent plane,
          390 straight great circles
          391 .TP
          392 .BI perspective " dist"
          393 viewed along earth's axis
          394 .I dist
          395 earth radii from center of earth
          396 .TP
          397 .B orthographic
          398 viewed from infinity
          399 .TP
          400 .B stereographic
          401 conformal, projected from opposite pole
          402 .TP
          403 .B laue
          404 .IR radius " = tan(2\(mu" colatitude ),
          405 used in X-ray crystallography
          406 .TP
          407 .BI fisheye " n"
          408 stereographic seen from just inside medium with refractive index
          409 .I n
          410 .TP
          411 .BI newyorker " r"
          412 .IR radius " = log(" colatitude / r ):
          413 .I New Yorker
          414 map from viewing pedestal of radius
          415 .I r
          416 degrees
          417 .PD
          418 .PP
          419 Polar conic projections symmetric about the Prime Meridian.
          420 Parallels are segments of concentric circles.
          421 Except in the Bonne projection,
          422 meridians are equally spaced radial
          423 lines orthogonal to the parallels.
          424 .PP
          425 .PD 0
          426 .TP 1.5i
          427 .BI conic " lat0"
          428 central projection on cone tangent at
          429 .I lat0
          430 .TP
          431 .BI simpleconic " lat0 lat1"
          432 equally spaced parallels, true scale on
          433 .I lat0
          434 and
          435 .I lat1
          436 .TP
          437 .BI lambert " lat0 lat1"
          438 conformal, true scale on 
          439 .I lat0
          440 and 
          441 .I lat1
          442 .TP
          443 .BI albers " lat0 lat1"
          444 equal-area, true scale on
          445 .I lat0
          446 and 
          447 .I lat1
          448 .TP
          449 .BI bonne " lat0"
          450 equally spaced parallels, equal-area,
          451 parallel
          452 .I lat0
          453 developed from tangent cone
          454 .PD
          455 .PP
          456 Projections with bilateral symmetry about
          457 the Prime Meridian
          458 and the equator.
          459 .PP
          460 .PD 0
          461 .TP 1.5i
          462 .B polyconic
          463 parallels developed from tangent cones,
          464 equally spaced along Prime Meridian
          465 .TP
          466 .B aitoff
          467 equal-area projection of globe onto 2-to-1
          468 ellipse, based on 
          469 .I azequalarea
          470 .TP
          471 .B lagrange
          472 conformal, maps whole sphere into a circle
          473 .TP
          474 .BI bicentric " lon0"
          475 points plotted at true azimuth from two
          476 centers on the equator at longitudes
          477 .IR ±lon0 ,
          478 great circles are straight lines
          479 (a stretched
          480 .IR gnomonic
          481 )
          482 .TP
          483 .BI elliptic " lon0"
          484 points plotted at true distance from
          485 two centers on the equator at longitudes
          486 .I ±lon0
          487 .TP
          488 .B globular
          489 hemisphere is circle,
          490 circular arc meridians equally spaced on equator,
          491 circular arc parallels equally spaced on 0- and 90-degree meridians
          492 .TP
          493 .B vandergrinten
          494 sphere is circle,
          495 meridians as in
          496 .IR globular ,
          497 circular arc parallels resemble 
          498 .I mercator
          499 .PD
          500 .PP
          501 Doubly periodic conformal projections.
          502 .PP
          503 .TP 1.5i
          504 .B guyou
          505 W and E hemispheres are square
          506 .PD 0
          507 .TP
          508 .B square
          509 world is square with Poles
          510 at diagonally opposite corners
          511 .TP
          512 .B tetra
          513 map on tetrahedron with edge
          514 tangent to Prime Meridian at S Pole,
          515 unfolded into equilateral triangle
          516 .TP
          517 .B hex
          518 world is hexagon centered
          519 on N Pole, N and S hemispheres are equilateral
          520 triangles
          521 .PD
          522 .PP
          523 Miscellaneous projections.
          524 .PP
          525 .PD 0
          526 .TP 1.5i
          527 .BI harrison " dist angle"
          528 oblique perspective from above the North Pole,
          529 .I dist
          530 earth radii from center of earth, looking
          531 along the Date Line
          532 .I angle
          533 degrees off vertical
          534 .TP
          535 .BI trapezoidal " lat0 lat1"
          536 equally spaced parallels,
          537 straight meridians equally spaced along parallels,
          538 true scale at
          539 .I lat0
          540 and
          541 .I lat1
          542 on Prime Meridian
          543 .PD
          544 .br
          545 .B lune(lat,angle)
          546 conformal, polar cap above latitude
          547 .I lat
          548 maps to convex lune with given
          549 .I angle
          550 at 90\(deE and 90\(deW
          551 .PP
          552 Retroazimuthal projections.
          553 At every point the angle between vertical and a straight line to
          554 `Mecca', latitude
          555 .I lat0
          556 on the prime meridian,
          557 is the true bearing of Mecca.
          558 .PP
          559 .PD 0
          560 .TP 1.5i
          561 .BI mecca " lat0"
          562 equally spaced vertical meridians
          563 .TP
          564 .BI homing " lat0"
          565 distances to Mecca are true
          566 .PD
          567 .PP
          568 Maps based on the spheroid.
          569 Of geodetic quality, these projections do not make sense
          570 for tilted orientations.
          571 For descriptions, see corresponding maps above.
          572 .PP
          573 .PD 0
          574 .TP 1.5i
          575 .B sp_mercator
          576 .TP
          577 .BI sp_albers " lat0 lat1"
          578 .SH EXAMPLES
          579 .TP
          580 .L
          581 map perspective 1.025 -o 40.75 74
          582 A view looking down on New York from 100 miles
          583 (0.025 of the 4000-mile earth radius) up.
          584 The job can be done faster by limiting the map so as not to `plot'
          585 the invisible part of the world:
          586 .LR "map perspective 1.025 -o 40.75 74 -l 20 60 30 100".
          587 A circular border can be forced by adding option
          588 .LR "-w 77.33" .
          589 (Latitude 77.33° falls just inside a polar cap of
          590 opening angle arccos(1/1.025) = 12.6804°.)
          591 .TP
          592 .L
          593 map mercator -o 49.25 -106 180
          594 An `equatorial' map of the earth
          595 centered on New York.
          596 The pole of the map is placed 90\(de away (40.75+49.25=90)
          597 on the
          598 other side of the earth.
          599 A 180° twist around the pole of the map arranges that the
          600 `Prime Meridian' of the map runs from the pole of the
          601 map over the North Pole to New York
          602 instead of down the back side of the earth.
          603 The same effect can be had from
          604 .L
          605 map mercator -o 130.75 74
          606 .TP
          607 .L
          608 map albers 28 45 -l 20 50 60 130 -m states
          609 A customary curved-latitude map of the United States.
          610 .TP
          611 .L
          612 map harrison 2 30 -l -90 90 120 240 -o 90 0 0
          613 A fan view covering 60° on either
          614 side of the Date Line, as seen from one earth radius
          615 above the North Pole gazing at the
          616 earth's limb, which is 30° off vertical.
          617 The
          618 .B -o
          619 option overrides the default
          620 .BR "-o 90 0 180" , 
          621 which would rotate
          622 the scene to behind the observer.
          623 .SH FILES
          624 .TF /lib/map/[1-4]??
          625 .TP
          626 .B /lib/map/[1-4]??
          627 World Data Bank II, for
          628 .B -f
          629 .TP
          630 .B /lib/map/*
          631 maps for
          632 .B -m
          633 .TP
          634 .B /lib/map/*.x
          635 map indexes
          636 .TP
          637 .B mapd
          638 Map driver program
          639 .SH SOURCE
          640 .B \*9/src/cmd/map
          641 .SH "SEE ALSO"
          642 .IR map (7), 
          643 .MR plot (1)
          644 .SH DIAGNOSTICS
          645 `Map seems to be empty'\(ema coarse survey found
          646 zero extent within the 
          647 .B -l
          648 and
          649 .BR -w 
          650 bounds; for maps of limited extent
          651 the grid resolution,
          652 .IR res ,
          653 or the limits may have to be refined.
          654 .SH BUGS
          655 Windows (option
          656 .BR -w )
          657 cannot cross the Date Line.
          658 No borders appear along edges arising from
          659 visibility limits.
          660 Segments that cross a border are dropped, not clipped.
          661 Excessively large scale or
          662 .B -d
          663 setting may cause long line segments to be dropped.
          664 .I Map
          665 tries to draw grid lines dotted and
          666 .B -t
          667 tracks dot-dashed.
          668 As very few plotting filters properly support
          669 curved textured lines, these lines are likely to
          670 appear solid.
          671 The west-longitude-positive convention
          672 betrays Yankee chauvinism.
          673 .I Gilbert
          674 should be a map from sphere to sphere, independent of
          675 the mapping from sphere to plane.