tbasic functions and tests for multisig transactions and bip 32 - electrum - Electrum Bitcoin wallet HTML git clone https://git.parazyd.org/electrum DIR Log DIR Files DIR Refs DIR Submodules --- DIR commit e1504ba80b108a4b4eabb04a43fe77f0eb5d2408 DIR parent 515b3412b034ed670cfb257b64ea95fa4b2ddbe9 HTML Author: thomasv <thomasv@gitorious> Date: Wed, 30 Jan 2013 20:13:31 +0100 basic functions and tests for multisig transactions and bip 32 Diffstat: M lib/bitcoin.py | 264 ++++++++++++++++++++++++++----- M lib/wallet.py | 20 ++++++++++---------- 2 files changed, 234 insertions(+), 50 deletions(-) --- DIR diff --git a/lib/bitcoin.py b/lib/bitcoin.py t@@ -29,6 +29,7 @@ def int_to_hex(i, length=1): return rev_hex(s) def var_int(i): + # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer if i<0xfd: return int_to_hex(i) elif i<=0xffff: t@@ -69,22 +70,22 @@ def i2d_ECPrivateKey(pkey, compressed=False): '%064x' % _r + \ '020101a144034200' - return key.decode('hex') + i2o_ECPublicKey(pkey, compressed) + return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed) -def i2o_ECPublicKey(pkey, compressed=False): +def i2o_ECPublicKey(pubkey, compressed=False): # public keys are 65 bytes long (520 bits) # 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate # 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed # compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd if compressed: - if pkey.pubkey.point.y() & 1: - key = '03' + '%064x' % pkey.pubkey.point.x() + if pubkey.point.y() & 1: + key = '03' + '%064x' % pubkey.point.x() else: - key = '02' + '%064x' % pkey.pubkey.point.x() + key = '02' + '%064x' % pubkey.point.x() else: key = '04' + \ - '%064x' % pkey.pubkey.point.x() + \ - '%064x' % pkey.pubkey.point.y() + '%064x' % pubkey.point.x() + \ + '%064x' % pubkey.point.y() return key.decode('hex') t@@ -93,8 +94,6 @@ def i2o_ECPublicKey(pkey, compressed=False): ############ functions from pywallet ##################### - -addrtype = 0 def hash_160(public_key): try: t@@ -111,7 +110,7 @@ def public_key_to_bc_address(public_key): h160 = hash_160(public_key) return hash_160_to_bc_address(h160) -def hash_160_to_bc_address(h160): +def hash_160_to_bc_address(h160, addrtype = 0): vh160 = chr(addrtype) + h160 h = Hash(vh160) addr = vh160 + h[0:4] t@@ -119,7 +118,7 @@ def hash_160_to_bc_address(h160): def bc_address_to_hash_160(addr): bytes = b58decode(addr, 25) - return bytes[1:21] + return ord(bytes[0]), bytes[1:21] def encode_point(pubkey, compressed=False): order = generator_secp256k1.order() t@@ -200,12 +199,12 @@ def DecodeBase58Check(psz): def PrivKeyToSecret(privkey): return privkey[9:9+32] -def SecretToASecret(secret, compressed=False): +def SecretToASecret(secret, compressed=False, addrtype=0): vchIn = chr((addrtype+128)&255) + secret if compressed: vchIn += '\01' return EncodeBase58Check(vchIn) -def ASecretToSecret(key): +def ASecretToSecret(key, addrtype=0): vch = DecodeBase58Check(key) if vch and vch[0] == chr((addrtype+128)&255): return vch[1:] t@@ -220,8 +219,8 @@ def regenerate_key(sec): secret = int('0x' + b.encode('hex'), 16) return EC_KEY(secret) -def GetPubKey(pkey, compressed=False): - return i2o_ECPublicKey(pkey, compressed) +def GetPubKey(pubkey, compressed=False): + return i2o_ECPublicKey(pubkey, compressed) def GetPrivKey(pkey, compressed=False): return i2d_ECPrivateKey(pkey, compressed) t@@ -252,48 +251,233 @@ class EC_KEY(object): self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret ) self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret ) self.secret = secret + + +###################################### BIP32 ############################## + +def bip32_init(seed): + import hmac + I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest() + + print "seed", seed.encode('hex') + master_secret = I[0:32] + master_chain = I[32:] + + # public key + curve = SECP256k1 + master_private_key = ecdsa.SigningKey.from_string( master_secret, curve = SECP256k1 ) + master_public_key = master_private_key.get_verifying_key() + K = master_public_key.to_string() + K_compressed = GetPubKey(master_public_key.pubkey,True) + return master_secret, master_chain, K, K_compressed + + +def CKD(k, c, n): + import hmac + from ecdsa.util import string_to_number, number_to_string + order = generator_secp256k1.order() + keypair = EC_KEY(string_to_number(k)) + K = GetPubKey(keypair.pubkey,True) + I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() + k_n = number_to_string( (string_to_number(I[0:32]) * string_to_number(k)) % order , order ) + c_n = I[32:] + return k_n, c_n + + +def CKD_prime(K, c, n): + import hmac + from ecdsa.util import string_to_number, number_to_string + order = generator_secp256k1.order() + K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 ) + K_compressed = GetPubKey(K_public_key.pubkey,True) -def filter(s): + I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest() + + #pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, string_to_number(I[0:32]) * K_public_key.pubkey.point ) + public_key = ecdsa.VerifyingKey.from_public_point( string_to_number(I[0:32]) * K_public_key.pubkey.point, curve = SECP256k1 ) + K_n = public_key.to_string() + K_n_compressed = GetPubKey(public_key.pubkey,True) + c_n = I[32:] + + return K_n, K_n_compressed, c_n + + + + + +################################## transactions + + +def tx_filter(s): out = re.sub('( [^\n]*|)\n','',s) out = out.replace(' ','') out = out.replace('\n','') return out -# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer def raw_tx( inputs, outputs, for_sig = None ): - s = int_to_hex(1,4) + ' version\n' - s += var_int( len(inputs) ) + ' number of inputs\n' + s = int_to_hex(1,4) # version + s += var_int( len(inputs) ) # number of inputs for i in range(len(inputs)): - _, _, p_hash, p_index, p_script, pubkey, sig = inputs[i] - s += p_hash.decode('hex')[::-1].encode('hex') + ' prev hash\n' - s += int_to_hex(p_index,4) + ' prev index\n' + _, _, p_hash, p_index, p_script, pubkeysig = inputs[i] + s += p_hash.decode('hex')[::-1].encode('hex') # prev hash + s += int_to_hex(p_index,4) # prev index + if for_sig is None: - sig = sig + chr(1) # hashtype - script = int_to_hex( len(sig)) + ' push %d bytes\n'%len(sig) - script += sig.encode('hex') + ' sig\n' - script += int_to_hex( len(pubkey)) + ' push %d bytes\n'%len(pubkey) - script += pubkey.encode('hex') + ' pubkey\n' + if len(pubkeysig) == 1: + pubkey, sig = pubkeysig[0] + sig = sig + chr(1) # hashtype + script = int_to_hex( len(sig)) + script += sig.encode('hex') + script += int_to_hex( len(pubkey)) + script += pubkey.encode('hex') + else: + pubkey0, sig0 = pubkeysig[0] + pubkey1, sig1 = pubkeysig[1] + sig0 = sig0 + chr(1) + sig1 = sig1 + chr(1) + inner_script = multisig_script([pubkey0, pubkey1]) + script = '00' # op_0 + script += int_to_hex(len(sig0)) + script += sig0.encode('hex') + script += int_to_hex(len(sig1)) + script += sig1.encode('hex') + script += var_int(len(inner_script)/2) + script += inner_script + elif for_sig==i: - script = p_script + ' scriptsig \n' + if len(pubkeysig) > 1: + script = multisig_script(pubkeysig) # p2sh uses the inner script + else: + script = p_script # scriptsig else: script='' - s += var_int( len(filter(script))/2 ) + ' script length \n' + s += var_int( len(tx_filter(script))/2 ) # script length s += script - s += "ffffffff" + ' sequence\n' - s += var_int( len(outputs) ) + ' number of outputs\n' + s += "ffffffff" # sequence + + s += var_int( len(outputs) ) # number of outputs for output in outputs: addr, amount = output - s += int_to_hex( amount, 8) + ' amount: %d\n'%amount - script = '76a9' # op_dup, op_hash_160 - script += '14' # push 0x14 bytes - script += bc_address_to_hash_160(addr).encode('hex') - script += '88ac' # op_equalverify, op_checksig - s += var_int( len(filter(script))/2 ) + ' script length \n' - s += script + ' script \n' - s += int_to_hex(0,4) # lock time - if for_sig is not None: s += int_to_hex(1, 4) # hash type + s += int_to_hex( amount, 8) # amount + addrtype, hash_160 = bc_address_to_hash_160(addr) + if addrtype == 0: + script = '76a9' # op_dup, op_hash_160 + script += '14' # push 0x14 bytes + script += hash_160.encode('hex') + script += '88ac' # op_equalverify, op_checksig + elif addrtype == 5: + script = 'a9' # op_hash_160 + script += '14' # push 0x14 bytes + script += hash_160.encode('hex') + script += '87' # op_equal + else: + raise + + s += var_int( len(tx_filter(script))/2 ) # script length + s += script # script + s += int_to_hex(0,4) # lock time + if for_sig is not None: s += int_to_hex(1, 4) # hash type + return tx_filter(s) + + +def multisig_script(public_keys): + # supports only "2 of 2", and "2 of 3" transactions + n = len(public_keys) + s = '52' + for k in public_keys: + s += var_int(len(k)/2) + s += k + if n==2: + s += '52' + elif n==3: + s += '53' + else: + raise + s += 'ae' return s + +def test_bip32(): + seed = "ff000000000000000000000000000000".decode('hex') + master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed) + + print "secret key", master_secret.encode('hex') + print "chain code", master_chain.encode('hex') + + key_id = hash_160(master_public_key_compressed) + print "keyid", key_id.encode('hex') + print "base58" + print "address", hash_160_to_bc_address(key_id) + print "secret key", SecretToASecret(master_secret, True) + + print "-- m/0 --" + k0, c0 = CKD(master_secret, master_chain, 0) + print "secret", k0.encode('hex') + print "chain", c0.encode('hex') + print "secret key", SecretToASecret(k0, True) + + K0, K0_compressed, c0 = CKD_prime(master_public_key, master_chain, 0) + print "address", hash_160_to_bc_address(hash_160(K0_compressed)) + + print "-- m/0/1 --" + K01, K01_compressed, c01 = CKD_prime(K0, c0, 1) + print "address", hash_160_to_bc_address(hash_160(K01_compressed)) + + print "-- m/0/1/3 --" + K013, K013_compressed, c013 = CKD_prime(K01, c01, 3) + print "address", hash_160_to_bc_address(hash_160(K013_compressed)) + + print "-- m/0/1/3/7 --" + K0137, K0137_compressed, c0137 = CKD_prime(K013, c013, 7) + print "address", hash_160_to_bc_address(hash_160(K0137_compressed)) + + +def test_p2sh(): + + print "2 of 2" + pubkeys = ["04e89a79651522201d756f14b1874ae49139cc984e5782afeca30ffe84e5e6b2cfadcfe9875c490c8a1a05a4debd715dd57471af8886ab5dfbb3959d97f087f77a", + "0455cf4a3ab68a011b18cb0a86aae2b8e9cad6c6355476de05247c57a9632d127084ac7630ad89893b43c486c5a9f7ec6158fb0feb708fa9255d5c4d44bc0858f8"] + s = multisig_script(pubkeys) + print "address", hash_160_to_bc_address(hash_160(s.decode('hex')), 5) + + + print "Gavin's tutorial: redeem p2sh: http://blockchain.info/tx-index/30888901" + pubkey1 = "0491bba2510912a5bd37da1fb5b1673010e43d2c6d812c514e91bfa9f2eb129e1c183329db55bd868e209aac2fbc02cb33d98fe74bf23f0c235d6126b1d8334f86" + pubkey2 = "04865c40293a680cb9c020e7b1e106d8c1916d3cef99aa431a56d253e69256dac09ef122b1a986818a7cb624532f062c1d1f8722084861c5c3291ccffef4ec6874" + pubkey3 = "048d2455d2403e08708fc1f556002f1b6cd83f992d085097f9974ab08a28838f07896fbab08f39495e15fa6fad6edbfb1e754e35fa1c7844c41f322a1863d46213" + pubkeys = [pubkey1, pubkey2, pubkey3] + + tx_for_sig = raw_tx( [(None, None, '3c9018e8d5615c306d72397f8f5eef44308c98fb576a88e030c25456b4f3a7ac', 0, 'a914f815b036d9bbbce5e9f2a00abd1bf3dc91e9551087', pubkeys)], + [('1GtpSrGhRGY5kkrNz4RykoqRQoJuG2L6DS',1000000)], for_sig = 0) + + print "tx for sig", tx_for_sig + + signature1 = "304502200187af928e9d155c4b1ac9c1c9118153239aba76774f775d7c1f9c3e106ff33c0221008822b0f658edec22274d0b6ae9de10ebf2da06b1bbdaaba4e50eb078f39e3d78" + signature2 = "30440220795f0f4f5941a77ae032ecb9e33753788d7eb5cb0c78d805575d6b00a1d9bfed02203e1f4ad9332d1416ae01e27038e945bc9db59c732728a383a6f1ed2fb99da7a4" + + for pubkey in pubkeys: + import traceback, sys + + public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1) + + try: + public_key.verify_digest( signature1.decode('hex'), Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der) + print True + except ecdsa.keys.BadSignatureError: + #traceback.print_exc(file=sys.stdout) + print False + + try: + public_key.verify_digest( signature2.decode('hex'), Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der) + print True + except ecdsa.keys.BadSignatureError: + #traceback.print_exc(file=sys.stdout) + print False + +if __name__ == '__main__': + #test_bip32() + test_p2sh() + DIR diff --git a/lib/wallet.py b/lib/wallet.py t@@ -130,7 +130,7 @@ class Wallet: # rebuild private and public key from regenerated secret private_key = GetPrivKey(pkey, compressed) - public_key = GetPubKey(pkey, compressed) + public_key = GetPubKey(pkey.pubkey, compressed) address = public_key_to_bc_address(public_key) if address in self.all_addresses(): t@@ -168,10 +168,10 @@ class Wallet: ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z') if not ADDRESS_RE.match(addr): return False try: - h = bc_address_to_hash_160(addr) + addrtype, h = bc_address_to_hash_160(addr) except: return False - return addr == hash_160_to_bc_address(h) + return addr == hash_160_to_bc_address(h, addrtype) def stretch_key(self,seed): oldseed = seed t@@ -216,7 +216,7 @@ class Wallet: compressed = False pkey = EC_KEY(secexp) - public_key = GetPubKey(pkey, compressed) + public_key = GetPubKey(pkey.pubkey, compressed) addr = public_key_to_bc_address(public_key) if addr != address: print_error('Invalid password with correct decoding') t@@ -606,7 +606,7 @@ class Wallet: addr = item.get('address') v = item.get('value') total += v - inputs.append((addr, v, item['tx_hash'], item['index'], item['raw_output_script'], None, None) ) + inputs.append((addr, v, item['tx_hash'], item['index'], item['raw_output_script'], [(None,None)] )) fee = self.fee*len(inputs) if fixed_fee is None else fixed_fee if total >= amount + fee: break else: t@@ -628,18 +628,18 @@ class Wallet: def sign_inputs( self, inputs, outputs, password ): s_inputs = [] for i in range(len(inputs)): - addr, v, p_hash, p_pos, p_scriptPubKey, _, _ = inputs[i] + addr, v, p_hash, p_pos, p_scriptPubKey, _ = inputs[i] secexp, compressed = self.get_private_key(addr, password) private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 ) public_key = private_key.get_verifying_key() pkey = EC_KEY(secexp) - pubkey = GetPubKey(pkey, compressed) + pubkey = GetPubKey(pkey.pubkey, compressed) - tx = filter( raw_tx( inputs, outputs, for_sig = i ) ) + tx = raw_tx( inputs, outputs, for_sig = i ) sig = private_key.sign_digest( Hash( tx.decode('hex') ), sigencode = ecdsa.util.sigencode_der ) assert public_key.verify_digest( sig, Hash( tx.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der) - s_inputs.append( (addr, v, p_hash, p_pos, p_scriptPubKey, pubkey, sig) ) + s_inputs.append( (addr, v, p_hash, p_pos, p_scriptPubKey, [(pubkey, sig)] ) ) return s_inputs def pw_encode(self, s, password): t@@ -841,7 +841,7 @@ class Wallet: def signed_tx(self, inputs, outputs, password): s_inputs = self.sign_inputs( inputs, outputs, password ) - tx = filter( raw_tx( s_inputs, outputs ) ) + tx = raw_tx( s_inputs, outputs ) return tx def sendtx(self, tx):