Binary tutorial for begginers. ---------------------------------- This tutorial is for people with a base knowledge that binary is ones and zeros. Easy, right? The 1 represents an "on" function, and the 0 represents an "off function. Decimal - Binary ----------------------- I'm going to use the easiest method I can think of in this tutorial. ~*~*~*~*~*~*~*~*~*~*~*~*~*~*~ Example: 129 now, count from the right ot left multiplying by twos until you reach the lowest number closest to the decimal you. Example: 128 64 32 16 8 4 2 1 We start with the number 128. Subtract the number from the decimal you wish to convert. EX/ _ 129 128 = 1 Now take that number and see if you can subtract it from the other number in the row. 128? Yes, = 1 64? No 32? No 16? No 8? No 4? No 2? No 1? Yes All the numbers that were subtractable are ones, and the ones you were unable to subtract are zeros. EX/ 128 64 32 16 8 4 2 1 1 0 0 0 0 0 0 1 Answer: Decimal 129 in Binary is: 10000001 ******************************************************* Binary to decimal ----------------- No that we have the binary, how do we get it back to a decimal? Incredibly simple. Take the binary 10000001 no insert the numbers multiplied by two again, but not putting anything for the zeros. EX/ 1 0 0 0 0 0 0 1 128 x x x x x x 1 Now add the numbers together to get the decimal 128+1 = 129 Remember, the far left is always 128, and the far right is always 1 Let us take another random binary now, and try that again. 1 0 0 1 0 1 0 0 128 +16 + 4 = 148 *********************************************************************** Remember, every ASCII character has a number, and with that decimal in mind, you can speak letters etc in binary! Below is a chart: 32 |143  33 ! ! |144  34 " " |145 ‘ 35 # # |146 ’ 36 $ $ |147 “ 37 % % |148 ” 38 & & |149 • 39 ' ' |150 – 40 ( ( |151 — 41 ) ) |152 ˜ 42 * * |153 ™ 43 + + |154 š 44 , , |155 › 45 - - |156 œ 46 . . |157  47 / / |158 ž 48 0 0 |159 Ÿ 49 1 1 |160   50 2 2 |161 ¡ 51 3 3 |162 ¢ 52 4 4 |163 £ 53 5 5 |164 ¤ 54 6 6 |165 ¥ 55 7 7 |166 ¦ 56 8 8 |167 § 57 9 9 |168 ¨ 58 : : |169 © 59 ; ; |170 ª 60 < < |171 « 61 = = |172 ¬ 62 > > |173 ­ 63 ? ? |174 ® 64 @ @ |175 ¯ 65 A A |176 ° 66 B B |177 ± 67 C C |178 ² 68 D D |179 ³ 69 E E |180 ´ 70 F F |181 µ 71 G G |182 ¶ 72 H H |183 · 73 I I |184 ¸ 74 J J |185 ¹ 75 K K |186 º 76 L L |187 » 77 M M |188 ¼ 78 N N |189 ½ 79 O O |190 ¾ 80 P P |191 ¿ 81 Q Q |192 À 82 R R |193 Á 83 S S |194  84 T T |195 à 85 U U |196 Ä 86 V V |197 Å 87 W W |198 Æ 88 X X |199 Ç 89 Y Y |200 È 90 Z Z |201 É 91 [ [ |202 Ê 92 \ \ |203 Ë 93 ] ] |204 Ì 94 ^ ^ |205 Í 95 _ _ |206 Î 96 ` ` |207 Ï 97 a a |208 Ð 98 b b |209 Ñ 99 c c |210 Ò 100 d d |211 Ó 101 e e |212 Ô 102 f f |213 Õ 103 g g |214 Ö 104 h h |215 × 105 i i |216 Ø 106 j j |217 Ù 107 k k |218 Ú 108 l l |219 Û 109 m m |220 Ü 110 n n |221 Ý 111 o o |222 Þ 112 p p |223 ß 113 q q |224 à 114 r r |225 á 115 s s |226 â 116 t t |227 ã 117 u u |228 ä 118 v v |229 å 119 w w |230 æ 120 x x |231 ç 121 y y |232 è 122 z z |233 é 123 { { |234 ê 124 | | |235 ë 125 } } |236 ì 126 ~ ~ |237 í 127   |238 î 128 € |239 ï 129  |240 ð 130 ‚ |241 ñ 131 ƒ |242 ò 132 „ |243 ó 133 … |244 ô 134 † |245 õ 135 ‡ |246 ö 136 ˆ |247 ÷ 137 ‰ |248 ø 138 Š |249 ù 139 ‹ |250 ú 140 Œ |251 û 141  |252 ü 142 Ž |253 ý 143  |254 þ ------------------------------------------------------------ Adding binary -------------- adding binary is very simple. simply take the two numbers you wish to add, put one on top of the other, and then add. Using the simple rules: 1+0=1 0+1=1 0+0=0 1+1=0 (and carry the 1 to the next space to the left) EX/ 00000010 (2) + 00000011 (3) = 00000101 (5) --------------------------------------------------------------- And there you have it! A simple begginers mini course in binary. Not the greatest text-file, but it works. :) ~*~*~*~*~~*~* Written by David Carlton - Resurgam 0100100101100110001000000111100101101111011101010010000001100011011000010110111000100000011100100110010101100001011001000010000001110100011010000110100101110011001000000111100101101111011101010010000001100001011100100110010100100000011011110111011001100101011100100110010101100100011101010110001101100001011101000110010101100100 .