URI: 
       Manual: The Kronecker symbol - libzahl - big integer library
  HTML git clone git://git.suckless.org/libzahl
   DIR Log
   DIR Files
   DIR Refs
   DIR README
   DIR LICENSE
       ---
   DIR commit 019da3a9e7f81cd882d0383ac707ce098013b4a9
   DIR parent 60dd5110e21d1aedc047f2033af74330df552e40
  HTML Author: Mattias Andrée <maandree@kth.se>
       Date:   Mon, 25 Jul 2016 16:38:43 +0200
       
       Manual: The Kronecker symbol
       
       Signed-off-by: Mattias Andrée <maandree@kth.se>
       
       Diffstat:
         M doc/not-implemented.tex             |      60 +++++++++++++++++++++++++++++---
       
       1 file changed, 56 insertions(+), 4 deletions(-)
       ---
   DIR diff --git a/doc/not-implemented.tex b/doc/not-implemented.tex
       @@ -163,7 +163,8 @@ so a compressed lookup table can be used for small $p$.
          \left ( \frac{a}{n} \right ) = 
          \prod_k \left ( \frac{a}{p_k} \right )^{n_k},
        }\)
       -where $n$ = $\displaystyle{\prod_k p_k^{n_k}}$, and $p_k \in \textbf{P}$.
       +where $\displaystyle{n = \prod_k p_k^{n_k} > 0}$,
       +and $p_k \in \textbf{P}$.
        \vspace{1em}
        
        Like the Legendre symbol, the Jacobi symbol is $n$-period over $a$.
       @@ -197,14 +198,65 @@ Use the following algorithm to calculate the Jacobi symbol:
            \STATE \textbf{start over}
        \end{algorithmic}
        \end{minipage}
       -\vspace{1em}
       -
        
        
        \subsection{Kronecker symbol}
        \label{sec:Kronecker symbol}
        
       -TODO
       +The Kronecker symbol
       +$\displaystyle{\left ( \frac{a}{n} \right )}$
       +is a generalisation of the Jacobi symbol,
       +where $n$ can be any integer. For positive
       +odd $n$, the Kronecker symbol is equal to
       +the Jacobi symbol. For even $n$, the
       +Kronecker symbol is $2n$-periodic over $a$,
       +the Kronecker symbol is zero for all
       +$(a, n)$ with both $a$ and $n$ are even.
       +
       +\vspace{1em}
       +\noindent
       +\( \displaystyle{
       +    \left ( \frac{a}{2^k \cdot n} \right ) =
       +    \left ( \frac{a}{n} \right ) \cdot \left ( \frac{a}{2} \right )^k,
       +}\)
       +where
       +\( \displaystyle{
       +    \left ( \frac{a}{2} \right ) =
       +    \left \lbrace \begin{array}{rl}
       +        1  & \text{if}~ a \equiv 1, 7 ~(\text{Mod}~ 8) \\
       +        -1 & \text{if}~ a \equiv 3, 5 ~(\text{Mod}~ 8) \\
       +        0  & \text{otherwise}
       +    \end{array} \right .
       +}\)
       +
       +\vspace{1em}
       +\noindent
       +\( \displaystyle{
       +    \left ( \frac{-a}{n} \right ) =
       +    \left ( \frac{a}{n} \right ) \cdot \left ( \frac{a}{-1} \right ),
       +}\)
       +where
       +\( \displaystyle{
       +    \left ( \frac{a}{-1} \right ) =
       +    \left \lbrace \begin{array}{rl}
       +        1  & \text{if}~ a \ge 0 \\
       +        -1 & \text{if}~ a < 0
       +    \end{array} \right .
       +}\)
       +\vspace{1em}
       +
       +\noindent
       +However, for $n = 0$, the symbol is defined as
       +
       +\vspace{1em}
       +\noindent
       +\( \displaystyle{
       +    \left ( \frac{a}{0} \right ) =
       +    \left \lbrace \begin{array}{rl}
       +        1 & \text{if}~ a = \pm 1 \\
       +        0 & \text{otherwise.}
       +    \end{array} \right .
       +}\)
        
        
        \subsection{Power residue symbol}