URI: 
       Manual: how to calculate the legendre symbol - libzahl - big integer library
  HTML git clone git://git.suckless.org/libzahl
   DIR Log
   DIR Files
   DIR Refs
   DIR README
   DIR LICENSE
       ---
   DIR commit 243a542dce0f8da6fc3ac43d5e5fcb144559b507
   DIR parent 802b2b18704f1b04ab3c3195d49333a546dc0ff4
  HTML Author: Mattias Andrée <maandree@kth.se>
       Date:   Mon, 25 Jul 2016 15:40:04 +0200
       
       Manual: how to calculate the legendre symbol
       
       Signed-off-by: Mattias Andrée <maandree@kth.se>
       
       Diffstat:
         M doc/not-implemented.tex             |      18 +++++++++++++++++-
       
       1 file changed, 17 insertions(+), 1 deletion(-)
       ---
   DIR diff --git a/doc/not-implemented.tex b/doc/not-implemented.tex
       @@ -136,7 +136,23 @@ TODO
        \subsection{Legendre symbol}
        \label{sec:Legendre symbol}
        
       -TODO
       +\( \displaystyle{
       +  \left ( \frac{a}{p} \right ) \equiv a^{\frac{p - 1}{2}} ~(\text{Mod}~p),~
       +  \left ( \frac{a}{p} \right ) \in \{-1,~0,~1\},~
       +  p \in \textbf{P},~ p > 2
       +}\)
       +
       +\noindent
       +That is, unless $\displaystyle{a^{\frac{p - 1}{2}} ~\text{Mod}~ p \le 1}$,
       +$\displaystyle{a^{\frac{p - 1}{2}} ~\text{Mod}~ p = p - 1}$, so
       +$\displaystyle{\left ( \frac{a}{p} \right ) = -1}$.
       +
       +It should be noted that
       +\( \displaystyle{
       +  \left ( \frac{a}{p} \right ) = 
       +  \left ( \frac{a ~\text{Mod}~ p}{p} \right ),
       +}\)
       +so a compressed lookup table can be used for small $p$.
        
        
        \subsection{Jacobi symbol}