URI: 
       φ(−n) = φ(n), φ(1) = 1, φ(0) = 0 - libzahl - big integer library
  HTML git clone git://git.suckless.org/libzahl
   DIR Log
   DIR Files
   DIR Refs
   DIR README
   DIR LICENSE
       ---
   DIR commit 8092c767cb5f872b62a0cabbef793a08643497db
   DIR parent dd753f78b0c39d86a4cccca08996df303762e532
  HTML Author: Mattias Andrée <maandree@kth.se>
       Date:   Thu, 28 Jul 2016 22:55:43 +0200
       
       φ(−n) = φ(n), φ(1) = 1, φ(0) = 0
       
       Signed-off-by: Mattias Andrée <maandree@kth.se>
       
       Diffstat:
         M doc/exercises.tex                   |       8 ++++++--
       
       1 file changed, 6 insertions(+), 2 deletions(-)
       ---
   DIR diff --git a/doc/exercises.tex b/doc/exercises.tex
       @@ -262,10 +262,13 @@ which calculates the totient of $n$. Its
        formula is
        
        \( \displaystyle{
       -    \varphi(n) = n \prod_{p \in \textbf{P} : p | n}
       +    \varphi(n) = |n| \prod_{p \in \textbf{P} : p | n}
            \left ( 1 - \frac{1}{p} \right ).
        }\)
        
       +Note that, $\varphi(-n) = \varphi(n)$, $\varphi(0) = 0$,
       +and $\varphi(1) = 1$.
       +
        
        
        \end{enumerate}
       @@ -671,7 +674,8 @@ So, if we set $a = n$ and $b = 1$, then we iterate
        of all integers $p$, $2 \le p \le n$. For which $p$
        that is prime, we set $a \gets a \cdot (p - 1)$ and
        $b \gets b \cdot p$. After the iteration, $b | a$,
       -and $\varphi(n) = \frac{a}{b}$.
       +and $\varphi(n) = \frac{a}{b}$. However, if $n < 0$,
       +then, $\varphi(n) = \varphi|n|$.