\documentclass[a4paper]{article} \usepackage{amsmath} \begin{document} \title{Don't Square Twice} \author{Amit Yaron} \date{Jan 25, 2025} \maketitle \section{Introduction} I like seeing thumbnails of math videos on YouTube, but without watching the video. Instead, I prefer making a document of the solution. One example is: \[ \sqrt{x-x^3}+\sqrt{x^2-x^3}=1 \] One way that leads to a quartic equation is to subtract one of the sqare roots to the right-hand side, and square both sides. Let us try something else. \section{Substitution} Let \[ a=\sqrt{x-x^3},\ b=\sqrt{x^2-x^3} \] Then, we can see that: \[ \begin{cases} a+b=1\\ a^2-b^2=x-x^2 \end{cases} \] By dividing the second equation by the first one, we get: \[ a-b=x-x^2 \] Now, \[ a+b=1\Rightarrow b=1-a\Rightarrow a-b=1-2b=x-x^2=\frac{b^2}x \] So, we can plug $x=\frac{b^2}{1-2b}$ into $b=\sqrt{x^2-x^3}$, and solve: \begin{equation} \sqrt{\frac{b^4}{(1-2b)^2}-\frac{b^6}{(1-2b)^3}}=b \end{equation} Now, is $b=0$ a solution? \begin{align*} &b=0\Rightarrow\\ \Rightarrow &x=\frac{b}{1-2b}=\frac{0}1=0\Rightarrow\\ \Rightarrow &\sqrt{x-x^3}+\sqrt{x^2-x^3}=0\neq1 \end{align*} which contradicts the definition of our equation. So, we can divide both sides of equation (1) by $b$, or the radicant by $b^2$ \begin{align*} &\sqrt{\frac{b^2}{(1-2b)^2}-\frac{b^4}{(1-2b)^3}}=1\Rightarrow\\ \Rightarrow &\frac{b^2}{(1-2b)^2}-\frac{b^4}{(1-2b)^3}=1\Rightarrow\\ \Rightarrow &(1-2b)b^2-b^4=(1-2b)^3\Rightarrow\\ \Rightarrow &b^2-2b^3-b^4=1-6b+12b^2-8b^3\Rightarrow\\ \Rightarrow &b^4-6b^3+11b^2-6b+1=0\Rightarrow\\ \Rightarrow &(b^4+1)-6(b^3+b)+11b^2=0\Rightarrow\\ \Rightarrow &(b^2+\frac1{b^2})-6\big(b+\frac1b\big)+11=0\Rightarrow\\ \Rightarrow &(b^2+\frac1{b^2}+2b\big(\frac1b)-2b\big(\frac1b)-6\big(b+\frac1b\big)+11=0\Rightarrow\\ \Rightarrow &\big(b+\frac1b)^2-2-6\big(b+\frac1b\big)+11=0\Rightarrow\\ \Rightarrow &\big(b+\frac1b)^2-6\big(b+\frac1b\big)+9=0\Rightarrow\\ \Rightarrow &[\big(b+\frac1b\big)-3]^2=0\Rightarrow\\ \Rightarrow &b+\frac1b-3=0\Rightarrow\\ \Rightarrow &b^2+1-3b=0\Rightarrow\\ \Rightarrow &b^2-3b+1=0\Rightarrow\\ \Rightarrow &b=\frac{3\pm\sqrt{(-3)^2-4\cdot1\cdot1}}2=\frac{3\pm\sqrt5}2 \end{align*} \section{Dropping the Extraneous Root} Let us refer back to the substitution at the beginning of Section 2:\\ $a$ and $b$ are square root, thus they cannot be negative.\\ and $a+b=1\Rightarrow a=1-b$ If we take: \[ b=\frac{3+\sqrt{5}}2 \] then: \[ a=1-\frac{3+\sqrt5}2=\frac{2-(3+\sqrt5)}2=\frac{-1-\sqrt5}2<0 \] But, $a$ cannot be negative, thus our solution is \[ b=\frac{3-\sqrt5}2 \] \section{Back Substitution} \[ x = \frac{b^2}{1-2b} \] Let us square $b$: \begin{align*} b^2&=\big(\frac{3-\sqrt5}2\big)^2\\ &=\frac{3^2+\sqrt5^2-2\cdot3\sqrt5}4\\ &=\frac{14-6\sqrt5}4\\ &=\frac{7-3\sqrt5}2 \end{align*} And what is $1-2b$? \[ 1-2b=1-2\cdot\frac{3-\sqrt5}2=1-(\frac3-\sqrt5)=\sqrt5-2 \] Thus, \begin{align*} x&=\frac{b^2}{1-2b}\\ &=\frac{7-3\sqrt5}{2\sqrt5-4}\\ &=\frac{(7-3\sqrt5)(2\sqrt5+4)}{(2\sqrt5-4)(2\sqrt5+4)}\\ &=\frac{14\sqrt5-30+28-12\sqrt5}{20-16}\\ &=\frac{2\sqrt5-2}4\\ &=\frac{\sqrt5-1}2 \end{align*} To test the solution: \begin{align*} &x=\frac{\sqrt5-1}2\Rightarrow\\ \Rightarrow &x^2=\frac{5+1-2\sqrt5}4\Rightarrow\\ \Rightarrow &x^2=\frac{3-\sqrt5}2\Rightarrow\\ \Rightarrow &x^2=\frac{2+1-\sqrt5}2\Rightarrow\\ \Rightarrow &x^2=1+\frac{1-\sqrt5}2\Rightarrow\\ \Rightarrow &x^2=1-x\Rightarrow\\ \Rightarrow &x^3=x(1-x)\Rightarrow\\ \Rightarrow &x^3=x-x^2\Rightarrow\\ \Rightarrow &x^3=x-(1-x)\Rightarrow\\ \Rightarrow &x^3=2x-1 \end{align*} Thus, \[ x-x^3=x-(2x-1)=1-x=x^2\Rightarrow \sqrt{x-x^3}=x \] And, \begin{align*} x^2-x^3&=(1-x)-(2x-1)\\ &=2-3x\\ &=2-\frac{3\sqrt5-3}2\\ &=\frac{7-3\sqrt5}2\\ &=\frac{14-6\sqrt5}4\\ &=\frac{9+5-6\sqrt5}4\\ &=\frac{3^2+\sqrt5^2-2\cdot3\sqrt5}4\\ &=\frac{(3-\sqrt5)^2}4\\ &=\big(\frac{3-\sqrt5}2\big)^2\\ &=(1-x)^2 \end{align*} Thus, \[ \sqrt{x^2-x^3}=1-x\Rightarrow \sqrt{x-x^3}+\sqrt{x^2-x^3}=1 \] \end{document}