\documentclass[a4paper]{article} \usepackage{amsmath} \usepackage{bigints} \begin{document} \title{Integral of $\sqrt[3]{\tan(x)}$} \author{Amit Yaron} \date{Jan 11, 2025} \maketitle \section{Introduction} In this document I'll show how powerful the substition $u=\tan(x)$ or\\ $x=\arctan(u)$ is. Then I will solve the crazy integral with it.\\ Let us first derive $\arctan(x)$: \begin{align*} &y=\arctan(x)\Rightarrow\\ \Rightarrow &x=\tan(y)=\frac{\sin(y)}{\cos(y)}\Rightarrow\\ \Rightarrow &1=y'\big(\frac{\cos(y)\cos(y)-(-\sin(y))\sin(y)}{\cos^2(y)}\big)\Rightarrow\\ \Rightarrow &1=\frac{y'(\cos^2(y)+\sin^2(y))}{\cos^2(y)}=\frac{1}{\cos^2(y)}\Rightarrow\\ \Rightarrow &y'=\cos^2(y) \end{align*} and \begin{align*} &\tan^2(y)=\frac{\sin^2(y)}{\cos^2(y)}=\frac{1-\cos^2(y)}{\cos^2(y)}\Rightarrow\\ \Rightarrow &\tan^2(y)=\frac{1}{\cos^2(y)}-1\Rightarrow\\ \Rightarrow &1+\tan^2(y)=\frac1{\cos^2(y)}\Rightarrow\\ \Rightarrow &y'=\cos^2(y)=\frac1{1+\tan^2(y)}=\boxed{\frac1{1+x^2}} \end{align*} \section{Substitutions} Due to the number of substitutions, the first step will be to assign a letter to our result: \[ I=\int\sqrt[3]{\tan(x)}dx \] Let us substitute \[ x=\arctan(u) \] Then \[ \dfrac{dx}{du}=\dfrac1{1+u^2} \] Thus, the integral becomes: \[ I=\int\sqrt[3]{\tan(x)}dx=\int\dfrac{\sqrt[3]u}{1+u^2}du \] Let us now substitute: \[ u=v^{\frac32} \] Then \[ \dfrac{du}{dv}=\dfrac{3\sqrt{v}}{2} \] Thus, \[ I=\int\dfrac{\sqrt{v}}{1+v^3}\cdot\dfrac{3\sqrt{v}}{2}dv=\dfrac32\int\dfrac{v}{1+v^3}dv \] \section{Partial Fractions} Now, we have a rational function to integrate, and the denominator is a cubic polynomial. So, let us factor it and write the integrand as a sum of two terms. \[ 1+v^3=(1+v)(v^2-v+1) \] Now, let us find constants $A,B,C$, such that \[ \frac{A}{v+1}+\frac{Bv+C}{v^2-v+1}=\frac{v}{v^3+1} \] Cross multiply: \begin{equation*} Av^2-Av+A+Bv^2+Bv+Cv+C=v\Rightarrow (A+B)v^2+(B+C-A)v+A+C=v \end{equation*} By equating the coefficints, we get: \[ \begin{cases} A+B=0\\B+C-A=1\\A+C=0 \end{cases} \] From the First and third equations, we get: \begin{equation*} B=C=-A\end{equation*} Let us plug it into the second equation: \begin{equation*}3B=1\end{equation*} Thus, \[ \begin{cases} A=-\frac13\\B=C=\frac13 \end{cases} \] Thus, \[ \frac{v}{v^3+1}=\frac13(\frac{v+1}{v^2-v+1}-\frac1{v+1}) \] \section{Back to the Integral} \begin{align*} I&=\dfrac12\int\dfrac{v+1}{v^2-v+1}-\dfrac1{v+1}dv\\ &=\dfrac12\int\dfrac{v+1}{v^2-v+1}dv-\dfrac12\int\dfrac{dv}{v+1}\\ &=\dfrac14\int\dfrac{2v+2}{v^2-v+1}-\dfrac{\ln|v+1|}2+C\\ &=\dfrac14\int\dfrac{2v-1}{v^2-v+1}+\dfrac14\int\dfrac{3}{v^2-v+1}-\dfrac{\ln|v+1|}2+C\\ &=\dfrac{\ln|v^2-v+1|}4+\dfrac{\sqrt3}2\arctan\big(\dfrac{2v-1}{\sqrt3}\big)-\dfrac{\ln|v+1|}2+C \end{align*} Now, let us substitute back: \begin{align*} &\tan(x)=u=v^{\frac32}\\ \Rightarrow &v=\sqrt[3]{\tan^2(x)}\\ \Rightarrow &I=\dfrac{\ln|\sqrt[3]{\tan^4(x)-\tan^2(x)+1|}}4 +\dfrac{\sqrt3}2\arctan\big(\dfrac{2\sqrt[3]{\tan^2(x)}}{\sqrt3}\big) -\dfrac{\ln|\sqrt[3]{\tan^2(x)}+1|}2+C \end{align*} \section{Summary} I have shown that the "crazy" integral can be written using elementary functions.\\ You may find further expansions on Wolfram Alpha (https://wolframalpha.com), but for me it is a waste of energy, so that's a good place to stop. \end{document}