\documentclass[a4paper]{article} \usepackage{amsmath} \usepackage{amssymb} \begin{document} \title{Sophie Germain Diophantine Equation} \author{Amit Yaron} \date{September 23, 2025} \maketitle When one talks about Sophie Germain, they usually take about the factorization of $a^4+4b^4$. Let us factorize it: \begin{align*} a^4+4b^4&={(a^2)}^2+{(2b^2)}^2\\ &={(a^2)}^2+2a^2\cdot2b^2+{(2b^2)}^2-2a^2\cdot2b^2\\ &={(a^2+2b^2)}^2-2^2a^2b^2\\ &={(a^2+2b^2)}^2-(2ab)^2\\ &=(a^2+2b^2-2ab)(a^2+2b^2+2ab)\\ &=(a^2-2ab+b^2+b^2)(a^2+2ab+b^2+b^2)\\ &=[(a-b)^2+b^2][(a+b)^2+b^2] \end{align*} You will probably want to use that factorization, when you have to find values for which an expression yields a prime number, but modular arithmetic will not help you. For example, one I've found on Michael Penn's YouTube channel:\\ For what values of $x$ \[ x^8+2^{2^x+2} \] is a prime number?. Let us try some small numbers and prove that other solutions do not exist. \[ x=0\Rightarrow x^8+2^{2^x+2}=2^{2^0+2}=2^3=8 \] Not a prime. \[ x=1\Rightarrow x^8+2^{2^x+2}=1^8+2^{2^1+2}=1+2^4=1+16=17 \] 17 is a prime number, so $x=1$ is a solution.\\ \\ And if $x<0$, then $2^x+2$ is a rational fraction and $2$ is a prime number, thus: \[ 2^{2^x+2}\notin \mathbb{Z} \] For values $x$ larger than or equal to 2, $2^x$ is a multiple of 4. Thus, we can use: \[ x^8+2^{2^x+2}={(x^2)}^4+2^{2^x}\cdot2^2={(x^2)}^4+4\cdot2^{2^x} \] Let us substitute: \[ a=x^2,\ b=2^{2^{\frac{x}4}}=2^{2^{x-2}} \] Then, \[ a^4+4b^4=[(a-b)^2+b^2][(a+b)^2-b^2] \] is a product of 2 factors, and for that product to be prime one of the factors has to be 1. Each factors is a sum of two squares, and squares are non-negative. Let us check the value of $b$ when $x\geq2$" \[ b=2^{2^{x-2}}\geq2^{2^0}=2^1=2>1 \] which means that \[ (a\pm b)^2\geq0\land b>1\Rightarrow (a\pm b)^2+b^2\neq 1 \] None of the factors is 1, thus for $x>2$ there are no solution, and thus: \[ x=1 \] is the only solution. \end{document}