The Square Root of 4444222225 ============================= Let us find a positive x, such that: x² = 4444222225 without a calculator or the pen-and-paper algorithm. The first step will be to look at its digits: Four fours, then four twos and then 25. Or 4444222225 = 4444000000 + 222200 + 25 = = 4444⋅10⁶ + 2222⋅100 + 25 = = 4⋅1111⋅10⁶+ 2·1111·100 + 25 = 4⋅9999⋅10⁶+ 2·9999·100 + 225 = ---------------------------- = 9 400(10⁴-1)10⁴ + 200(10⁴-1) + 15² = -------------------------------- 9 Let a=10⁴-, then 400a(a+1) + 200a + 15² 4444222225 = ---------------------- = 9 400a² + 600a + 15² = ------------------ = 9 (20a)² + 2·15(20a) + 15² = ------------------------ = 9 (20a + 15)² (20·9999 + 15)² = ----------- = --------------- = (20·3333 + 5)² = 9 3² = 66665² Thus, +-----------+ | x = 66665 | +-----------+