\documentclass[a4paper]{article} \usepackage{amsmath} \begin{document} \title{What is $7^1+7^2+7^3+7^4+7^5$?} \author{Amit Yaron} \date{Sep 16, 2025} \maketitle Another one from YouTube that you are not supposed to solve it the naive way. The way to solve it is similar to that you use for solving a quartic equation wit symmetry, such as: \[ x^4+x^3+x^2+x+1=0 \] So, I'm gonna divide the expression by $7^3$ and multiply by it. Notice that $7+\frac17=\frac{50}7$, and here 50 is to be raised to the second power. Let's start: \begin{align*} 7^1+7^2+7^3+7^4+7^5&=7^3\bigg(\frac1{7^2}+\frac17+1+7+7^2\big)\\ &=7^3\Bigg(\bigg(7+\frac17\bigg))+\bigg(7^2+\frac1{7^2}\bigg)+1\Bigg)\\ &=7^3\Bigg(\bigg(7+\frac17\bigg))\\&\quad+\bigg(7^2+\frac1{7^2}i+2\cdot7\cdot\frac17-2\cdot7\cdot\frac17\bigg)+1\Bigg)\\ &=7^3\Bigg(\bigg(7+\frac17\bigg)+{\bigg(7+\frac17\bigg)}^2-2+1\Bigg)\\ &=7^3\bigg(\frac{50}7+\frac{50^2}{7^2}-1\bigg)\\ &=7^3\bigg(\frac{7\cdot50+50^2-49}{49}\bigg)\\ &=7(350+2500-49)\\ &=7(2500+301)\\ &=17500+2107\\ &=19607 \end{align*} Cool! Without even cubing the digit 7 or anything else. Easier than using a calculator! \end{document}